{"title":"Drosophila yakuba mayottensis, a new model for the study of incipient ecological speciation.","authors":"Amir Yassin","doi":"10.1080/19336934.2016.1221550","DOIUrl":null,"url":null,"abstract":"<p><p>A full understanding of how ecological factors drive the fixation of genetic changes during speciation is obscured by the lack of appropriate models with clear natural history and powerful genetic toolkits. In a recent study, we described an early stage of ecological speciation in a population of the generalist species Drosophila yakuba (melanogaster subgroup) on the island of Mayotte (Indian Ocean). On this island, flies are strongly associated with the toxic fruits of noni (Morinda citrifolia) and show a partial degree of pre-zygotic reproductive isolation. Here, I mine the nuclear and mitochondrial genomes and provide a full morphological description of this population. Only 29 nuclear sites (< 4 × 10<sup>-7</sup> of the genome) are fixed in this population and absent from 3 mainland populations and the closest relative D. santomea, but no mitochondrial or morphological character distinguish Mayotte flies from the mainland. This result indicates that physiological and behavioral traits may evolve faster than morphology at the early stages of speciation. Based on these differences, the Mayotte population is designated as a new subspecies, Drosophila yakuba mayottensis subsp. nov., and its strong potential in understanding the genetics of speciation and plant-insect interactions is discussed.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"11 1","pages":"37-45"},"PeriodicalIF":2.4000,"publicationDate":"2017-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2016.1221550","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fly","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336934.2016.1221550","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/8/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
A full understanding of how ecological factors drive the fixation of genetic changes during speciation is obscured by the lack of appropriate models with clear natural history and powerful genetic toolkits. In a recent study, we described an early stage of ecological speciation in a population of the generalist species Drosophila yakuba (melanogaster subgroup) on the island of Mayotte (Indian Ocean). On this island, flies are strongly associated with the toxic fruits of noni (Morinda citrifolia) and show a partial degree of pre-zygotic reproductive isolation. Here, I mine the nuclear and mitochondrial genomes and provide a full morphological description of this population. Only 29 nuclear sites (< 4 × 10-7 of the genome) are fixed in this population and absent from 3 mainland populations and the closest relative D. santomea, but no mitochondrial or morphological character distinguish Mayotte flies from the mainland. This result indicates that physiological and behavioral traits may evolve faster than morphology at the early stages of speciation. Based on these differences, the Mayotte population is designated as a new subspecies, Drosophila yakuba mayottensis subsp. nov., and its strong potential in understanding the genetics of speciation and plant-insect interactions is discussed.
期刊介绍:
Fly is the first international peer-reviewed journal to focus on Drosophila research. Fly covers a broad range of biological sub-disciplines, ranging from developmental biology and organogenesis to sensory neurobiology, circadian rhythm and learning and memory, to sex determination, evolutionary biology and speciation. We strive to become the “to go” resource for every researcher working with Drosophila by providing a forum where the specific interests of the Drosophila community can be discussed. With the advance of molecular technologies that enable researchers to manipulate genes and their functions in many other organisms, Fly is now also publishing papers that use other insect model systems used to investigate important biological questions.
Fly offers a variety of papers, including Original Research Articles, Methods and Technical Advances, Brief Communications, Reviews and Meeting Reports. In addition, Fly also features two unconventional types of contributions, Counterpoints and Extra View articles. Counterpoints are opinion pieces that critically discuss controversial papers questioning current paradigms, whether justified or not. Extra View articles, which generally are solicited by Fly editors, provide authors of important forthcoming papers published elsewhere an opportunity to expand on their original findings and discuss the broader impact of their discovery. Extra View authors are strongly encouraged to complement their published observations with additional data not included in the original paper or acquired subsequently.