Yue Zhang, Xiangdong Wang, Kimberly Loesch, Larry A May, George E Davis, Jing Jiang, Stuart J Frank
{"title":"TIMP3 Modulates GHR Abundance and GH Sensitivity.","authors":"Yue Zhang, Xiangdong Wang, Kimberly Loesch, Larry A May, George E Davis, Jing Jiang, Stuart J Frank","doi":"10.1210/me.2015-1302","DOIUrl":null,"url":null,"abstract":"<p><p>GH receptor (GHR) binds GH at the cell surface via its extracellular domain and initiates intracellular signal transduction, resulting in important anabolic and metabolic actions. GH signaling is subject to dynamic regulation, which in part is exerted by modulation of cell surface GHR levels. Constitutive and inducible metalloprotease-mediated cleavage of GHR regulate GHR abundance and thereby modulate GH action. We previously demonstrated that GHR proteolysis is catalyzed by the TNF-α converting enzyme (TACE; ADAM17). Tissue inhibitors of metalloproteases-3 (TIMP3) is a natural specific inhibitor of TACE, although mechanisms underlying this inhibition are not yet fully understood. In the current study, we use two model cell lines to examine the relationships between cellular TACE, TIMP3 expression, GHR metalloproteolysis, and GH sensitivity. These two cell lines exhibited markedly different sensitivity to inducible GHR proteolysis, which correlated directly to their relative levels of mature TACE vs unprocessed TACE precursor and indirectly to their levels of cellular TIMP3. Our results implicate TIMP3 as a modulator of cell surface GHR abundance and the ability of GH to promote cellular signaling; these modulatory effects may be conferred by endogenous TIMP3 expression as well as exogenous TIMP3 exposure. Furthermore, our analysis suggests that TIMP3, in addition to regulating the activity of TACE, may also modulate the maturation of TACE, thereby affecting the abundance of the active form of the enzyme. </p>","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 6","pages":"587-99"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/me.2015-1302","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1210/me.2015-1302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/4/13 0:00:00","PubModel":"Epub","JCR":"Q","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 10
Abstract
GH receptor (GHR) binds GH at the cell surface via its extracellular domain and initiates intracellular signal transduction, resulting in important anabolic and metabolic actions. GH signaling is subject to dynamic regulation, which in part is exerted by modulation of cell surface GHR levels. Constitutive and inducible metalloprotease-mediated cleavage of GHR regulate GHR abundance and thereby modulate GH action. We previously demonstrated that GHR proteolysis is catalyzed by the TNF-α converting enzyme (TACE; ADAM17). Tissue inhibitors of metalloproteases-3 (TIMP3) is a natural specific inhibitor of TACE, although mechanisms underlying this inhibition are not yet fully understood. In the current study, we use two model cell lines to examine the relationships between cellular TACE, TIMP3 expression, GHR metalloproteolysis, and GH sensitivity. These two cell lines exhibited markedly different sensitivity to inducible GHR proteolysis, which correlated directly to their relative levels of mature TACE vs unprocessed TACE precursor and indirectly to their levels of cellular TIMP3. Our results implicate TIMP3 as a modulator of cell surface GHR abundance and the ability of GH to promote cellular signaling; these modulatory effects may be conferred by endogenous TIMP3 expression as well as exogenous TIMP3 exposure. Furthermore, our analysis suggests that TIMP3, in addition to regulating the activity of TACE, may also modulate the maturation of TACE, thereby affecting the abundance of the active form of the enzyme.
期刊介绍:
Molecular Endocrinology provides a forum for papers devoted to describing molecular mechanisms by which hormones and related compounds regulate function. It has quickly achieved a reputation as a high visibility journal with very rapid communication of cutting edge science: the average turnaround time is 28 days from manuscript receipt to first decision, and accepted manuscripts are published online within a week through Rapid Electronic Publication. In the 2008 Journal Citation Report, Molecular Endocrinology is ranked 16th out of 93 journals in the Endocrinology and Metabolism category, with an Impact Factor of 5.389.