Myristic acid hitchhiking on sigma-1 receptor to fend off neurodegeneration.

Jenna Ciesielski, Tsung-Ping Su, Shang-Yi Tsai
{"title":"Myristic acid hitchhiking on sigma-1 receptor to fend off neurodegeneration.","authors":"Jenna Ciesielski,&nbsp;Tsung-Ping Su,&nbsp;Shang-Yi Tsai","doi":"10.14800/rci.1114","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases are linked to tauopathy as a result of cyclin dependent kinase 5 (cdk5) binding to its p25 activator instead of its p35 activator and becoming over-activated. The overactive complex stimulates the hyperphosphorylation of tau proteins, leading to neurofibrillary tangles (NFTs) and stunting axon growth and development. It is known that the sigma-1 receptor (Sig-1R), an endoplasmic reticulum chaperone, can be involved in axon growth by promoting neurite sprouting through nerve growth factor (NGF) and tropomyosin receptor kinase B (TrkB)<sup>[1, 2]</sup>. It has also been previously demonstrated that a Sig-1R deficiency impairs the process of neurogenesis by causing a down-regulation of N-methyl-D-aspartate receptors (NMDARs)<sup>[3]</sup>. The recent study by Tsai <i>et al</i>. sought to understand the relationship between Sig-1R and tauopathy<sup>[4]</sup>. It was discovered that the Sig-1R helps maintain proper tau phosphorylation and axon development by facilitating p35 myristoylation and promoting p35 turnover. Neurons that had the Sig-1R knocked down exhibited shortened axons and higher levels of phosphorylated tau proteins compared to control neurons. Here we discuss these recent findings on the role of Sig-1R in tauopathy and highlight the newly presented physiological consequences of the Sig-1R-lipid interaction, helping to understand the close relationship between lipids and neurodegeneration.</p>","PeriodicalId":74650,"journal":{"name":"Receptors & clinical investigation","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827442/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Receptors & clinical investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/rci.1114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Neurodegenerative diseases are linked to tauopathy as a result of cyclin dependent kinase 5 (cdk5) binding to its p25 activator instead of its p35 activator and becoming over-activated. The overactive complex stimulates the hyperphosphorylation of tau proteins, leading to neurofibrillary tangles (NFTs) and stunting axon growth and development. It is known that the sigma-1 receptor (Sig-1R), an endoplasmic reticulum chaperone, can be involved in axon growth by promoting neurite sprouting through nerve growth factor (NGF) and tropomyosin receptor kinase B (TrkB)[1, 2]. It has also been previously demonstrated that a Sig-1R deficiency impairs the process of neurogenesis by causing a down-regulation of N-methyl-D-aspartate receptors (NMDARs)[3]. The recent study by Tsai et al. sought to understand the relationship between Sig-1R and tauopathy[4]. It was discovered that the Sig-1R helps maintain proper tau phosphorylation and axon development by facilitating p35 myristoylation and promoting p35 turnover. Neurons that had the Sig-1R knocked down exhibited shortened axons and higher levels of phosphorylated tau proteins compared to control neurons. Here we discuss these recent findings on the role of Sig-1R in tauopathy and highlight the newly presented physiological consequences of the Sig-1R-lipid interaction, helping to understand the close relationship between lipids and neurodegeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
搭载在sigma-1受体上的肉豆蔻酸抵御神经变性。
由于细胞周期蛋白依赖性激酶5 (cdk5)与p25激活因子结合而不是与p35激活因子结合并过度激活,神经退行性疾病与tau病有关。过度活跃的复合物刺激tau蛋白的过度磷酸化,导致神经原纤维缠结(nft)和轴突生长发育迟缓。已知sigma-1受体(sigg - 1r)是一种内质网伴侣,可通过神经生长因子(NGF)和原肌球蛋白受体激酶B (TrkB)促进神经突发芽,参与轴突生长[1,2]。先前也有研究表明,sig1r缺乏会导致n-甲基- d -天冬氨酸受体(NMDARs)下调,从而损害神经发生过程[3]。Tsai等人最近的研究试图了解Sig-1R与牛头病之间的关系[4]。研究发现,Sig-1R通过促进p35肉豆蔻酰化和促进p35周转,帮助维持适当的tau磷酸化和轴突发育。与对照神经元相比,sig1r被敲除的神经元表现出轴突缩短和更高水平的磷酸化tau蛋白。在这里,我们讨论了最近关于Sig-1R在牛头病中的作用的发现,并强调了Sig-1R-脂质相互作用的新发现的生理后果,有助于理解脂质和神经变性之间的密切关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CD28 family of receptors inter-connect in the regulation of T-cells Urokinase-type plasminogen activator (uPA) and its receptor (uPAR) promote neurorepair in the ischemic brain Bacterial superantigen toxins induce a lethal cytokine storm by enhancing B7-2/CD28 costimulatory receptor engagement, a critical immune checkpoint. Bacterial superantigen toxins induce a lethal cytokine storm by enhancing B7-2/CD28 costimulatory receptor engagement, a critical immune checkpoint. An entry-competent intermediate state of the HIV-1 envelope glycoproteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1