Satomi Saho, Hiroki Satoh, Eisaku Kondo, Yusuke Inoue, Akira Yamauchi, Hitoshi Murata, Rie Kinoshita, Ken-Ichi Yamamoto, Junichiro Futami, Endy Widya Putranto, I Made Winarsa Ruma, I Wayan Sumardika, Chen Youyi, Ken Suzawa, Hiromasa Yamamoto, Junichi Soh, Shuta Tomida, Yoshihiko Sakaguchi, Ken Saito, Hidekazu Iioka, Nam-Ho Huh, Shinichi Toyooka, Masakiyo Sakaguchi
{"title":"Active Secretion of Dimerized S100A11 Induced by the Peroxisome in Mesothelioma Cells.","authors":"Satomi Saho, Hiroki Satoh, Eisaku Kondo, Yusuke Inoue, Akira Yamauchi, Hitoshi Murata, Rie Kinoshita, Ken-Ichi Yamamoto, Junichiro Futami, Endy Widya Putranto, I Made Winarsa Ruma, I Wayan Sumardika, Chen Youyi, Ken Suzawa, Hiromasa Yamamoto, Junichi Soh, Shuta Tomida, Yoshihiko Sakaguchi, Ken Saito, Hidekazu Iioka, Nam-Ho Huh, Shinichi Toyooka, Masakiyo Sakaguchi","doi":"10.1007/s12307-016-0185-2","DOIUrl":null,"url":null,"abstract":"<p><p>S100A11, a small Ca<sup>2+</sup> binding protein, acts extracellularly as a mediator of cancer progression. That raises the question of how a protein that lacks the classical secretory signal is able to be secreted outside cells without being damaged. Some insights into this question have been obtained, and there has been accumulating evidence indicating a pivotal role of a non-classical vesicle-mediated pathway using lysosomes or peroxisomes for the protein secretion. To obtain a more precise insight into the secretory mechanism of S100A11, we first screened representative cancer cells exhibiting significantly active secretion of S100A11. From the results of profiling, we turned our attention to aggressive cancer mesothelioma cells. In mesothelioma cells, we found that abundant dimeric S100A11 was produced selectively in the peroxisome after transportation of monomeric S100A11 through an interaction with PEX14, a peroxisome membrane protein, resulting in peroxisomal secretion of dimerized S100A11. In an extracellular environment in vitro, dimerized S100A11 promoted mesothelial cell invasion indirectly with the help of fibroblast cells. Overall, the results indicate that the peroxisome functions as an essential vesicle for the production of dimerized S100A11 and the subsequent secretion of the protein from mesothelioma cells and that peroxisome-mediated secretion of dimerized S100A11 might play a critical role in mesothelioma progression in a tumor microenvironment.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"9 2-3","pages":"93-105"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-016-0185-2","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Microenvironment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12307-016-0185-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/6/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 12
Abstract
S100A11, a small Ca2+ binding protein, acts extracellularly as a mediator of cancer progression. That raises the question of how a protein that lacks the classical secretory signal is able to be secreted outside cells without being damaged. Some insights into this question have been obtained, and there has been accumulating evidence indicating a pivotal role of a non-classical vesicle-mediated pathway using lysosomes or peroxisomes for the protein secretion. To obtain a more precise insight into the secretory mechanism of S100A11, we first screened representative cancer cells exhibiting significantly active secretion of S100A11. From the results of profiling, we turned our attention to aggressive cancer mesothelioma cells. In mesothelioma cells, we found that abundant dimeric S100A11 was produced selectively in the peroxisome after transportation of monomeric S100A11 through an interaction with PEX14, a peroxisome membrane protein, resulting in peroxisomal secretion of dimerized S100A11. In an extracellular environment in vitro, dimerized S100A11 promoted mesothelial cell invasion indirectly with the help of fibroblast cells. Overall, the results indicate that the peroxisome functions as an essential vesicle for the production of dimerized S100A11 and the subsequent secretion of the protein from mesothelioma cells and that peroxisome-mediated secretion of dimerized S100A11 might play a critical role in mesothelioma progression in a tumor microenvironment.
期刊介绍:
Cancer Microenvironment is the official journal of the International Cancer Microenvironment Society (ICMS). It publishes original studies in all aspects of basic, clinical and translational research devoted to the study of cancer microenvironment. It also features reports on clinical trials.
Coverage in Cancer Microenvironment includes: regulation of gene expression in the cancer microenvironment; innate and adaptive immunity in the cancer microenvironment, inflammation and cancer; tumor-associated stroma and extracellular matrix, tumor-endothelium interactions (angiogenesis, extravasation), cancer stem cells, the metastatic niche, targeting the tumor microenvironment: preclinical and clinical trials.