The Proteome and Lipidome of Thermococcus kodakarensis across the Stationary Phase.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2016-05-04 eCollection Date: 2016-01-01 DOI:10.1155/2016/5938289
Emma J Gagen, Marcos Y Yoshinaga, Franka Garcia Prado, Kai-Uwe Hinrichs, Michael Thomm
{"title":"The Proteome and Lipidome of Thermococcus kodakarensis across the Stationary Phase.","authors":"Emma J Gagen,&nbsp;Marcos Y Yoshinaga,&nbsp;Franka Garcia Prado,&nbsp;Kai-Uwe Hinrichs,&nbsp;Michael Thomm","doi":"10.1155/2016/5938289","DOIUrl":null,"url":null,"abstract":"<p><p>The majority of cells in nature probably exist in a stationary-phase-like state, due to nutrient limitation in most environments. Studies on bacteria and yeast reveal morphological and physiological changes throughout the stationary phase, which lead to an increased ability to survive prolonged nutrient limitation. However, there is little information on archaeal stationary phase responses. We investigated protein- and lipid-level changes in Thermococcus kodakarensis with extended time in the stationary phase. Adaptations to time in stationary phase included increased proportion of membrane lipids with a tetraether backbone, synthesis of proteins that ensure translational fidelity, specific regulation of ABC transporters (upregulation of some, downregulation of others), and upregulation of proteins involved in coenzyme production. Given that the biological mechanism of tetraether synthesis is unknown, we also considered whether any of the protein-level changes in T. kodakarensis might shed light on the production of tetraether lipids across the same period. A putative carbon-nitrogen hydrolase, a TldE (a protease in Escherichia coli) homologue, and a membrane bound hydrogenase complex subunit were candidates for possible involvement in tetraether-related reactions, while upregulation of adenosylcobalamin synthesis proteins might lend support to a possible radical mechanism as a trigger for tetraether synthesis. </p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2016-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/5938289","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2016/5938289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 6

Abstract

The majority of cells in nature probably exist in a stationary-phase-like state, due to nutrient limitation in most environments. Studies on bacteria and yeast reveal morphological and physiological changes throughout the stationary phase, which lead to an increased ability to survive prolonged nutrient limitation. However, there is little information on archaeal stationary phase responses. We investigated protein- and lipid-level changes in Thermococcus kodakarensis with extended time in the stationary phase. Adaptations to time in stationary phase included increased proportion of membrane lipids with a tetraether backbone, synthesis of proteins that ensure translational fidelity, specific regulation of ABC transporters (upregulation of some, downregulation of others), and upregulation of proteins involved in coenzyme production. Given that the biological mechanism of tetraether synthesis is unknown, we also considered whether any of the protein-level changes in T. kodakarensis might shed light on the production of tetraether lipids across the same period. A putative carbon-nitrogen hydrolase, a TldE (a protease in Escherichia coli) homologue, and a membrane bound hydrogenase complex subunit were candidates for possible involvement in tetraether-related reactions, while upregulation of adenosylcobalamin synthesis proteins might lend support to a possible radical mechanism as a trigger for tetraether synthesis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柯达热球菌静止期蛋白质组和脂质组的研究。
在自然界中,由于大多数环境中营养物质的限制,大多数细胞可能处于静止相状态。对细菌和酵母的研究揭示了在整个固定阶段的形态和生理变化,这导致了长期营养限制的生存能力增强。然而,关于古细菌固定相反应的信息很少。我们研究了柯达热球菌在固定期延长时间后蛋白质和脂质水平的变化。在固定阶段对时间的适应包括增加带有四醚骨架的膜脂的比例,确保翻译保真度的蛋白质合成,ABC转运蛋白的特异性调节(一些上调,另一些下调),以及参与辅酶生产的蛋白质的上调。考虑到四醚合成的生物学机制尚不清楚,我们也考虑了在同一时期内,T. kodakarensis中蛋白质水平的变化是否可能揭示四醚脂质的产生。假设的碳氮水解酶、TldE(大肠杆菌中的一种蛋白酶)同源物和膜结合氢化酶复合物亚基可能参与四醚相关反应,而腺苷钴胺素合成蛋白的上调可能支持自由基机制作为四醚合成的触发因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1