Connexins and pannexins in neuronal development and adult neurogenesis.

Q1 Biochemistry, Genetics and Molecular Biology BMC Cell Biology Pub Date : 2016-05-24 DOI:10.1186/s12860-016-0089-5
Leigh Anne Swayne, Steffany A L Bennett
{"title":"Connexins and pannexins in neuronal development and adult neurogenesis.","authors":"Leigh Anne Swayne, Steffany A L Bennett","doi":"10.1186/s12860-016-0089-5","DOIUrl":null,"url":null,"abstract":"<p><p>Connexins and pannexins share very similar structures and functions; they also exhibit overlapping expression in many stages of neuronal development. Here, we review evidence implicating connexin- and pannexin-mediated communication in the regulation of the birth and development of neurons, specifically Cx26, Cx30, Cx32, Cx36, Cx43, Cx45, Panx1, and Panx2. We begin by dissecting the involvement of these proteins in the generation and development of new neurons in the embryonic, postnatal, and adult brain. Next we briefly outline common mechanisms employed by both pannexins and connexins in these roles, including modulation of purinergic receptor signalling and signalling nexus functions. Throughout this review we highlight developing themes as well as important gaps in knowledge to be bridged. </p>","PeriodicalId":9051,"journal":{"name":"BMC Cell Biology","volume":"17 Suppl 1 ","pages":"10"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12860-016-0089-5","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12860-016-0089-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 49

Abstract

Connexins and pannexins share very similar structures and functions; they also exhibit overlapping expression in many stages of neuronal development. Here, we review evidence implicating connexin- and pannexin-mediated communication in the regulation of the birth and development of neurons, specifically Cx26, Cx30, Cx32, Cx36, Cx43, Cx45, Panx1, and Panx2. We begin by dissecting the involvement of these proteins in the generation and development of new neurons in the embryonic, postnatal, and adult brain. Next we briefly outline common mechanisms employed by both pannexins and connexins in these roles, including modulation of purinergic receptor signalling and signalling nexus functions. Throughout this review we highlight developing themes as well as important gaps in knowledge to be bridged.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连接蛋白和泛连接蛋白在神经元发育和成人神经发生中的作用。
连接蛋白和泛连接蛋白具有非常相似的结构和功能;它们在神经元发育的许多阶段也表现出重叠表达。在这里,我们回顾了连接蛋白和泛连接蛋白介导的通信在神经元的出生和发育调节中的证据,特别是Cx26、Cx30、Cx32、Cx36、Cx43、Cx45、Panx1和Panx2。我们首先剖析这些蛋白质在胚胎、出生后和成人大脑中新神经元的产生和发育中的作用。接下来,我们简要概述了泛连接蛋白和连接蛋白在这些作用中所采用的共同机制,包括嘌呤能受体信号传导和信号传导连接功能的调节。在整个审查过程中,我们强调了发展中的主题以及需要弥合的重要知识差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Cell Biology
BMC Cell Biology 生物-细胞生物学
CiteScore
7.30
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: BMC Molecular and Cell Biology, formerly known as BMC Cell Biology, is an open access journal that considers articles on all aspects of both eukaryotic and prokaryotic cell and molecular biology, including structural and functional cell biology, DNA and RNA in a cellular context and biochemistry, as well as research using both the experimental and theoretical aspects of physics to study biological processes and investigations into the structure of biological macromolecules.
期刊最新文献
Mitotic activity patterns and cytoskeletal changes throughout the progression of diapause developmental program in Daphnia. Shikonin sensitizes A549 cells to TRAIL-induced apoptosis through the JNK, STAT3 and AKT pathways. Post-treatment de-phosphorylation of p53 correlates with dasatinib responsiveness in malignant melanoma. Comparative evaluation of mesenchymal stromal cells from umbilical cord and amniotic membrane in xeno-free conditions. The STRIPAK complex components FAM40A and FAM40B regulate endothelial cell contractility via ROCKs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1