Joshua L Warren, Carolina Perez-Heydrich, Clara R Burgert, Michael E Emch
{"title":"Influence of Demographic and Health Survey Point Displacements on Point-in-Polygon Analyses.","authors":"Joshua L Warren, Carolina Perez-Heydrich, Clara R Burgert, Michael E Emch","doi":"10.1007/s40980-015-0015-z","DOIUrl":null,"url":null,"abstract":"<p><p>We use Demographic and Health Survey (DHS) data to evaluate the impact of random spatial displacements on analyses that involve assigning covariate values from ancillary areal and point feature data. We introduce a method to determine the maximum probability covariate (MPC), and compare this to the naive covariate (NC) selection method with respect to obtaining the true covariate of interest. The MPC selection method outperforms the NC selection method by increasing the probability that the correct covariate is chosen. Proposed guidelines also address how characteristics of ancillary areal and point features contribute to uncertainty in covariate assignment.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40980-015-0015-z","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40980-015-0015-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/6/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
We use Demographic and Health Survey (DHS) data to evaluate the impact of random spatial displacements on analyses that involve assigning covariate values from ancillary areal and point feature data. We introduce a method to determine the maximum probability covariate (MPC), and compare this to the naive covariate (NC) selection method with respect to obtaining the true covariate of interest. The MPC selection method outperforms the NC selection method by increasing the probability that the correct covariate is chosen. Proposed guidelines also address how characteristics of ancillary areal and point features contribute to uncertainty in covariate assignment.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.