{"title":"Australian Meningococcal Surveillance Programme annual report, 2014.","authors":"Monica M Lahra, Rodney P Enriquez","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In 2014 there were 165 laboratory-confirmed cases of invasive meningococcal disease analysed by the Australian National Neisseria Network. This number was higher than the number reported in 2013, but was the second lowest reported since inception of the Australian Meningococcal Surveillance Programme in 1994. Probable and laboratory confirmed invasive meningococcal disease (IMD) are notifiable in Australia, and there were 170 IMD cases notified to the National Notifiable Diseases Surveillance System (NNDSS) in 2014. This was also higher than in 2013, but was the second lowest number of IMD cases reported to the NNDSS. The meningococcal serogroup was determined for 161/165 (98%) of laboratory confirmed IMD cases. Of these, 80.1% (129 cases) were serogroup B infections; 1.9% (3 cases) were serogroup C infections; 9.9% (16 cases) were serogroup W135; and 8.1% (13 cases) were serogroup Y. Primary and secondary disease peaks were observed in those aged 4 years or less, and in adolescents (15-19 years) respectively. Serogroup B cases predominated in all jurisdictions and age groups, except for those aged 65 years or over, where serogroups Y and W135 combined predominated. The overall proportion and number of IMD caused by serogroup B was higher than in 2013, but has decreased from previous years. The number of cases of IMD caused by serogroup C was the lowest reported to date. The number of IMD cases caused by serogroup Y was similar to previous years, but the number of IMD cases caused serogroup W135 was higher than in 2013. The proportion of IMD cases caused by serogroups Y and W135 has increased in recent years, whilst the overall number of cases of IMD has decreased. Molecular typing was able to be performed on 106 of the 165 IMD cases. In 2014, the most common porA genotypes circulating in Australia were P1.7-2,4 and P1.22,14. All IMD isolates tested were susceptible to ceftriaxone and ciprofloxacin. There were 2 isolates that were resistant to rifampicin. Decreased susceptibility to penicillin was observed in 88% of isolates. </p>","PeriodicalId":51669,"journal":{"name":"Communicable Diseases Intelligence","volume":"40 2","pages":"E221-8"},"PeriodicalIF":1.6000,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communicable Diseases Intelligence","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
In 2014 there were 165 laboratory-confirmed cases of invasive meningococcal disease analysed by the Australian National Neisseria Network. This number was higher than the number reported in 2013, but was the second lowest reported since inception of the Australian Meningococcal Surveillance Programme in 1994. Probable and laboratory confirmed invasive meningococcal disease (IMD) are notifiable in Australia, and there were 170 IMD cases notified to the National Notifiable Diseases Surveillance System (NNDSS) in 2014. This was also higher than in 2013, but was the second lowest number of IMD cases reported to the NNDSS. The meningococcal serogroup was determined for 161/165 (98%) of laboratory confirmed IMD cases. Of these, 80.1% (129 cases) were serogroup B infections; 1.9% (3 cases) were serogroup C infections; 9.9% (16 cases) were serogroup W135; and 8.1% (13 cases) were serogroup Y. Primary and secondary disease peaks were observed in those aged 4 years or less, and in adolescents (15-19 years) respectively. Serogroup B cases predominated in all jurisdictions and age groups, except for those aged 65 years or over, where serogroups Y and W135 combined predominated. The overall proportion and number of IMD caused by serogroup B was higher than in 2013, but has decreased from previous years. The number of cases of IMD caused by serogroup C was the lowest reported to date. The number of IMD cases caused by serogroup Y was similar to previous years, but the number of IMD cases caused serogroup W135 was higher than in 2013. The proportion of IMD cases caused by serogroups Y and W135 has increased in recent years, whilst the overall number of cases of IMD has decreased. Molecular typing was able to be performed on 106 of the 165 IMD cases. In 2014, the most common porA genotypes circulating in Australia were P1.7-2,4 and P1.22,14. All IMD isolates tested were susceptible to ceftriaxone and ciprofloxacin. There were 2 isolates that were resistant to rifampicin. Decreased susceptibility to penicillin was observed in 88% of isolates.