{"title":"Deciphering cell-cell communication in the developing mammalian brain.","authors":"Scott A Yuzwa, Freda D Miller","doi":"10.1080/23262133.2017.1286425","DOIUrl":null,"url":null,"abstract":"<p><p>The diverse subtypes of neurons that comprise the mammalian cerebral cortex are produced from a single population of cortical neural precursor cells during the period of embryonic neurogenesis. While this process of neurogenesis is tightly controlled at the transcriptional and translational levels, substantial opportunity exists for extrinsic or niche control of the process of neurogenesis. In our recently published work we made use of a combination of computational and biologic approaches to characterize cell-cell communication between cortical neurons and cortical precursor cells and thereby reveal an unexpectedly complex growth factor communication network that accurately predicted new regulators of cortical neurogenesis.</p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"4 1","pages":"e1286425"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2017.1286425","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogenesis (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23262133.2017.1286425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The diverse subtypes of neurons that comprise the mammalian cerebral cortex are produced from a single population of cortical neural precursor cells during the period of embryonic neurogenesis. While this process of neurogenesis is tightly controlled at the transcriptional and translational levels, substantial opportunity exists for extrinsic or niche control of the process of neurogenesis. In our recently published work we made use of a combination of computational and biologic approaches to characterize cell-cell communication between cortical neurons and cortical precursor cells and thereby reveal an unexpectedly complex growth factor communication network that accurately predicted new regulators of cortical neurogenesis.