Cells on the move: Modulation of guidance cues during germ cell migration.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Fly Pub Date : 2017-07-03 Epub Date: 2017-03-16 DOI:10.1080/19336934.2017.1304332
Girish Deshpande, Justinn Barr, Offer Gerlitz, Lyubov Lebedeva, Yulii Shidlovskii, Paul Schedl
{"title":"Cells on the move: Modulation of guidance cues during germ cell migration.","authors":"Girish Deshpande,&nbsp;Justinn Barr,&nbsp;Offer Gerlitz,&nbsp;Lyubov Lebedeva,&nbsp;Yulii Shidlovskii,&nbsp;Paul Schedl","doi":"10.1080/19336934.2017.1304332","DOIUrl":null,"url":null,"abstract":"<p><p>In Drosophila melanogaster the progenitors of the germ-line stem cells, the primordial germ cells (PGCs) are formed on the outside surface of the early embryo, while the somatic gonadal precursor cells (SGPs) are specified during mid-embryogenesis. To form the primitive embryonic gonad, the PGCs travel from outside of the embryo, across the mid-gut and then migrate through the mesoderm to the SGPs. The migratory path of PGCs is dictated by a series of attractive and repulsive cues. Studies in our laboratory have shown that one of the key chemoattractants is the Hedgehog (Hh) ligand. Although, Hh is expressed in other cell types, the long-distance transmission of this ligand is specifically potentiated in the SGPs by the hmgcr isoprenoid biosynthetic pathway. The distant transmission of the Hh ligand is gated by restricting expression of hmgcr to the SGPs. This is particularly relevant in light of the recent findings that an ABC transporter, mdr49 also acts in a mesoderm specific manner to release the germ cell attractant. Our studies have demonstrated that mdr49 functions in hh signaling likely via its role in the transport of cholesterol. Given the importance of cholesterol in the processing and long distance transmission of the Hh ligand, this observation has opened up an exciting avenue concerning the possible role of components of the sterol transport machinery in PGC migration.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2017.1304332","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fly","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336934.2017.1304332","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/3/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

In Drosophila melanogaster the progenitors of the germ-line stem cells, the primordial germ cells (PGCs) are formed on the outside surface of the early embryo, while the somatic gonadal precursor cells (SGPs) are specified during mid-embryogenesis. To form the primitive embryonic gonad, the PGCs travel from outside of the embryo, across the mid-gut and then migrate through the mesoderm to the SGPs. The migratory path of PGCs is dictated by a series of attractive and repulsive cues. Studies in our laboratory have shown that one of the key chemoattractants is the Hedgehog (Hh) ligand. Although, Hh is expressed in other cell types, the long-distance transmission of this ligand is specifically potentiated in the SGPs by the hmgcr isoprenoid biosynthetic pathway. The distant transmission of the Hh ligand is gated by restricting expression of hmgcr to the SGPs. This is particularly relevant in light of the recent findings that an ABC transporter, mdr49 also acts in a mesoderm specific manner to release the germ cell attractant. Our studies have demonstrated that mdr49 functions in hh signaling likely via its role in the transport of cholesterol. Given the importance of cholesterol in the processing and long distance transmission of the Hh ligand, this observation has opened up an exciting avenue concerning the possible role of components of the sterol transport machinery in PGC migration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动中的细胞:生殖细胞迁移过程中引导信号的调节。
在生殖系干细胞的祖先黑腹果蝇中,原始生殖细胞(PGCs)在早期胚胎的外表面形成,而体细胞性腺前体细胞(sgp)在胚胎中期形成。为了形成原始的胚胎性腺,PGCs从胚胎外部穿过中肠,然后通过中胚层迁移到sgp。PGCs的迁移路径是由一系列吸引和排斥信号决定的。我们实验室的研究表明,其中一个关键的化学引诱剂是刺猬(Hh)配体。虽然Hh在其他细胞类型中也表达,但这种配体的远距离传递通过hmgcr类异戊二烯生物合成途径在sgp中特异性增强。Hh配体的远距离传递是通过限制hmgcr对sgp的表达来控制的。鉴于最近发现ABC转运蛋白mdr49也以中胚层特异性方式释放生殖细胞引诱剂,这一点尤为重要。我们的研究表明,mdr49可能通过其在胆固醇运输中的作用在hh信号传导中起作用。考虑到胆固醇在Hh配体的加工和长距离传输中的重要性,这一观察结果开辟了一条令人兴奋的途径,即甾醇运输机制成分在PGC迁移中的可能作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fly
Fly 生物-生化与分子生物学
CiteScore
2.90
自引率
0.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: Fly is the first international peer-reviewed journal to focus on Drosophila research. Fly covers a broad range of biological sub-disciplines, ranging from developmental biology and organogenesis to sensory neurobiology, circadian rhythm and learning and memory, to sex determination, evolutionary biology and speciation. We strive to become the “to go” resource for every researcher working with Drosophila by providing a forum where the specific interests of the Drosophila community can be discussed. With the advance of molecular technologies that enable researchers to manipulate genes and their functions in many other organisms, Fly is now also publishing papers that use other insect model systems used to investigate important biological questions. Fly offers a variety of papers, including Original Research Articles, Methods and Technical Advances, Brief Communications, Reviews and Meeting Reports. In addition, Fly also features two unconventional types of contributions, Counterpoints and Extra View articles. Counterpoints are opinion pieces that critically discuss controversial papers questioning current paradigms, whether justified or not. Extra View articles, which generally are solicited by Fly editors, provide authors of important forthcoming papers published elsewhere an opportunity to expand on their original findings and discuss the broader impact of their discovery. Extra View authors are strongly encouraged to complement their published observations with additional data not included in the original paper or acquired subsequently.
期刊最新文献
Ribose-cysteine and levodopa abrogate Parkinsonism via the regulation of neurochemical and redox activities in alpha-synuclein transgenic Drosophila melanogaster models. Effects of unstable β-PheRS on food avoidance, growth, and development are suppressed by the appetite hormone CCHa2. A novel adipose loss-of-function mutant in Drosophila. The astrocyte-enriched gene deathstar plays a crucial role in the development, locomotion, and lifespan of D. melanogaster. Conserved A-to-I RNA editing with non-conserved recoding expands the candidates of functional editing sites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1