Plant grafting: insights into tissue regeneration.

Regeneration (Oxford, England) Pub Date : 2016-12-21 eCollection Date: 2017-02-01 DOI:10.1002/reg2.71
Charles W Melnyk
{"title":"Plant grafting: insights into tissue regeneration.","authors":"Charles W Melnyk","doi":"10.1002/reg2.71","DOIUrl":null,"url":null,"abstract":"<p><p>For millennia, people have cut and joined different plants together through a process known as grafting. The severed tissues adhere, the cells divide and the vasculature differentiates through a remarkable process of regeneration between two genetically distinct organisms as they become one. Grafting is becoming increasingly important in horticulture where it provides an efficient means for asexual propagation. Grafting also combines desirable roots and shoots to generate chimeras that are more vigorous, more pathogen resistant and more abiotic stress resistant. Thus, it presents an elegant and efficient way to improve plant productivity in vegetables and trees using traditional techniques. Despite this horticultural importance, we are only beginning to understand how plants regenerate tissues at the graft junction. By understanding grafting better, we can shed light on fundamental regeneration pathways and the basis for self/non-self recognition. We can also better understand why many plants efficiently graft whereas others cannot, with the goal of improving grafting so as to broaden the range of grafted plants to create even more desirable chimeras. Here, I review the latest findings describing how plants graft and provide insight into future directions in this emerging field.</p>","PeriodicalId":90316,"journal":{"name":"Regeneration (Oxford, England)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/reg2.71","citationCount":"139","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regeneration (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/reg2.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/2/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 139

Abstract

For millennia, people have cut and joined different plants together through a process known as grafting. The severed tissues adhere, the cells divide and the vasculature differentiates through a remarkable process of regeneration between two genetically distinct organisms as they become one. Grafting is becoming increasingly important in horticulture where it provides an efficient means for asexual propagation. Grafting also combines desirable roots and shoots to generate chimeras that are more vigorous, more pathogen resistant and more abiotic stress resistant. Thus, it presents an elegant and efficient way to improve plant productivity in vegetables and trees using traditional techniques. Despite this horticultural importance, we are only beginning to understand how plants regenerate tissues at the graft junction. By understanding grafting better, we can shed light on fundamental regeneration pathways and the basis for self/non-self recognition. We can also better understand why many plants efficiently graft whereas others cannot, with the goal of improving grafting so as to broaden the range of grafted plants to create even more desirable chimeras. Here, I review the latest findings describing how plants graft and provide insight into future directions in this emerging field.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物嫁接:组织再生的见解。
几千年来,人们通过一种被称为嫁接的过程将不同的植物切割并连接在一起。当两个基因截然不同的生物体合二为一时,切断的组织粘附在一起,细胞分裂,脉管系统通过一个显著的再生过程进行分化。嫁接在园艺中变得越来越重要,它为无性繁殖提供了有效的手段。嫁接也将理想的根和芽结合在一起,产生更有活力、更抗病原体和更抗非生物胁迫的嵌合体。因此,它提供了一种优雅而有效的方法来提高蔬菜和树木的植物生产力,使用传统技术。尽管在园艺上具有重要意义,但我们才刚刚开始了解植物如何在嫁接接点再生组织。通过更好地理解嫁接,我们可以揭示基本的再生途径和自我/非自我识别的基础。我们也可以更好地理解为什么许多植物可以有效地嫁接,而其他植物却不能,目的是改进嫁接,从而扩大嫁接植物的范围,创造更理想的嵌合体。在这里,我回顾了描述植物如何嫁接的最新发现,并对这一新兴领域的未来方向提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Does urban renewal impact social interaction in public open space? Evidence from Sham Shui Po, Hong Kong Regenerating Hong Kong’s New Towns: Resilience and Collaboration in the Context of Polycentric Urban Development Urban Regeneration-Is it possible for the environmental regeneration of Hong Kong to begin from Kau Yi Chau Island? Reimagining Heath Park - A complex systems approach to urban re-generation The Asian City: Regeneration as Value Added
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1