Physico-chemical changes in karkade (Hibiscus sabdariffa L.) seedlings responding to salt stress.

Q3 Biochemistry, Genetics and Molecular Biology Acta Biologica Hungarica Pub Date : 2017-03-01 DOI:10.1556/018.68.2017.1.7
Abdelnasser Galal
{"title":"Physico-chemical changes in karkade (Hibiscus sabdariffa L.) seedlings responding to salt stress.","authors":"Abdelnasser Galal","doi":"10.1556/018.68.2017.1.7","DOIUrl":null,"url":null,"abstract":"<p><p>Salinity is one of the major abiotic stress factors affecting series of morphological, physiological, metabolic and molecular changes in plant growth. The effect of different concentrations (0, 25, 50, 100 and 150 mM) of NaCl on the vegetative growth and some physiological parameters of karkade (Hibiscus sabdariffa var. sabdariffa) seedling were investigated. NaCl affected the germination rate, delayed emergence and retarded vegetative growth of seedlings. The length of seedling as well as the leaf area was significantly reduced. The fresh weight remained lower in NaCl treated seedlings compared to control. NaCl at 100 and 150 mM concentrations had significant effect on the dry matter contents of the treated seedlings. The chloroplast pigments in the treated seedlings were affected, suggesting that the NaCl had a significant effect on the chlorophyll and carotenoid biosynthesis. The results showed that the salt treatments induced an increase in proline concentration of the seedlings. The osmotic potential (ψs) of NaCl treated seedlings decreased with increasing NaCl concentrations. Salt treatments resulted in dramatic quantitative reduction in the total sterol percent compared with control ones. Salt stress resulted in increase and decrease of Na<sup>+</sup> and K<sup>+</sup> ions, respectively. NaCl salinity increased lipid peroxidation. SDS-PAGE was used to evaluate protein pattern after applying salt stress. High molecular weight proteins were intensified, while low molecular weight proteins were faint. NaCl at 100 and 150 mM concentration distinguished with new protein bands. Salt stress induced a new peroxidase bands and increased the band intensity, indicating the protective role of peroxidase enzyme.</p>","PeriodicalId":7009,"journal":{"name":"Acta Biologica Hungarica","volume":"68 1","pages":"73-87"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1556/018.68.2017.1.7","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biologica Hungarica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/018.68.2017.1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 8

Abstract

Salinity is one of the major abiotic stress factors affecting series of morphological, physiological, metabolic and molecular changes in plant growth. The effect of different concentrations (0, 25, 50, 100 and 150 mM) of NaCl on the vegetative growth and some physiological parameters of karkade (Hibiscus sabdariffa var. sabdariffa) seedling were investigated. NaCl affected the germination rate, delayed emergence and retarded vegetative growth of seedlings. The length of seedling as well as the leaf area was significantly reduced. The fresh weight remained lower in NaCl treated seedlings compared to control. NaCl at 100 and 150 mM concentrations had significant effect on the dry matter contents of the treated seedlings. The chloroplast pigments in the treated seedlings were affected, suggesting that the NaCl had a significant effect on the chlorophyll and carotenoid biosynthesis. The results showed that the salt treatments induced an increase in proline concentration of the seedlings. The osmotic potential (ψs) of NaCl treated seedlings decreased with increasing NaCl concentrations. Salt treatments resulted in dramatic quantitative reduction in the total sterol percent compared with control ones. Salt stress resulted in increase and decrease of Na+ and K+ ions, respectively. NaCl salinity increased lipid peroxidation. SDS-PAGE was used to evaluate protein pattern after applying salt stress. High molecular weight proteins were intensified, while low molecular weight proteins were faint. NaCl at 100 and 150 mM concentration distinguished with new protein bands. Salt stress induced a new peroxidase bands and increased the band intensity, indicating the protective role of peroxidase enzyme.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盐胁迫下木槿幼苗的理化变化
盐度是影响植物生长过程中一系列形态、生理、代谢和分子变化的主要非生物胁迫因子之一。研究了不同NaCl浓度(0、25、50、100和150 mM)对木芙蓉幼苗营养生长和一些生理参数的影响。NaCl影响了幼苗的发芽率,延迟了幼苗的出芽,抑制了幼苗的营养生长。幼苗长度和叶面积均显著减少。与对照相比,NaCl处理的幼苗鲜重仍然较低。100和150 mM NaCl处理对幼苗干物质含量有显著影响。处理后的幼苗叶绿体色素受到影响,表明NaCl对叶绿素和类胡萝卜素的生物合成有显著影响。结果表明,盐处理使幼苗脯氨酸浓度升高。NaCl处理幼苗的渗透势(ψs)随NaCl浓度的增加而降低。与对照相比,盐处理显著降低了总甾醇含量。盐胁迫导致Na+和K+离子分别增加和减少。NaCl盐度增加脂质过氧化。采用SDS-PAGE技术对盐胁迫后的蛋白谱进行了评价。高分子量蛋白增强,低分子量蛋白减弱。NaCl浓度为100和150 mM时,出现了新的蛋白条带。盐胁迫诱导了新的过氧化物酶条带,条带强度增加,表明过氧化物酶具有保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Biologica Hungarica
Acta Biologica Hungarica 生物-生物学
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: Acta Biologica Hungarica provides a forum for original research works in the field of experimental biology. It covers cytology, functional morphology, embriology, genetics, endocrinology, cellular physiology, plant physiology, neurobiology, ethology and environmental biology with emphasis on toxicology. Publishes book reviews and advertisements.
期刊最新文献
Study of ABO blood grouping and secretor status among habituals – A case control study Trends in Mangrove meiobenthic studies in India: an overview Report of Lecanophryella indica (Ciliophora, Suctorea) as epibiont on harpacticoid copepod from Mumbai coast of India (Arabian Sea) Report of rotifer-ciliate-gastropod hyperepibiosis found on snail (Mollusca) from Goa, India Phytochemical analysis, antioxidant and anticancer activity of Aerva javanica growing in district Karak, Khyber Pakhtunkhwa Pakistan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1