Jacqueline R Meadows, Chevonne Parker, Kathleen M Gilbert, Sarah J Blossom, Jamie C DeWitt
{"title":"A single dose of trichloroethylene given during development does not substantially alter markers of neuroinflammation in brains of adult mice.","authors":"Jacqueline R Meadows, Chevonne Parker, Kathleen M Gilbert, Sarah J Blossom, Jamie C DeWitt","doi":"10.1080/1547691X.2017.1305021","DOIUrl":null,"url":null,"abstract":"<p><p>Trichloroethylene (TCE) is a widespread environmental contaminant associated with developmental immunotoxicity and neurotoxicity. Previous studies have shown that MRL<sup>+/+</sup> mice exposed to TCE from gestation through early-life demonstrate robust increases in inflammatory markers in peripheral CD4<sup>+</sup> T-cells, as well as glutathione depletion and increased oxidative stress in cerebellum-associated with alterations in behavior. Since increased oxidative stress is associated with neuroinflammation, we hypothesized that neuroinflammatory markers could be altered relative to unexposed mice. MRL<sup>+/+</sup> mice were given 0.5 mg/ml of TCE in vehicle or vehicle (water with 1% Alkamuls EL-620) from conception through early adulthood via drinking water to dams and then directly to post-weaning offspring. Animals were euthanized at 49 days of age and levels of pro- and anti-inflammatory cytokines, density of T-cell staining, and micro-glial morphology were evaluated in brains to begin to ascertain a neuroinflammatory profile. Levels of IL-6 were decreased in female animals and while not statistically significant, and levels of IL-10 were higher in brains of exposed male and female animals. Supportive of this observation, although not statistically significant, the number of ameboid microglia was higher in exposed relative to unexposed animals. This overall profile suggests the emergence of an anti-inflammatory/neuroprotective phenotype in exposed animals, possibly as a compensatory response to neuroinflammation that is known to be induced by developmental exposure to TCE.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"14 1","pages":"95-102"},"PeriodicalIF":2.4000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1547691X.2017.1305021","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1547691X.2017.1305021","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
Trichloroethylene (TCE) is a widespread environmental contaminant associated with developmental immunotoxicity and neurotoxicity. Previous studies have shown that MRL+/+ mice exposed to TCE from gestation through early-life demonstrate robust increases in inflammatory markers in peripheral CD4+ T-cells, as well as glutathione depletion and increased oxidative stress in cerebellum-associated with alterations in behavior. Since increased oxidative stress is associated with neuroinflammation, we hypothesized that neuroinflammatory markers could be altered relative to unexposed mice. MRL+/+ mice were given 0.5 mg/ml of TCE in vehicle or vehicle (water with 1% Alkamuls EL-620) from conception through early adulthood via drinking water to dams and then directly to post-weaning offspring. Animals were euthanized at 49 days of age and levels of pro- and anti-inflammatory cytokines, density of T-cell staining, and micro-glial morphology were evaluated in brains to begin to ascertain a neuroinflammatory profile. Levels of IL-6 were decreased in female animals and while not statistically significant, and levels of IL-10 were higher in brains of exposed male and female animals. Supportive of this observation, although not statistically significant, the number of ameboid microglia was higher in exposed relative to unexposed animals. This overall profile suggests the emergence of an anti-inflammatory/neuroprotective phenotype in exposed animals, possibly as a compensatory response to neuroinflammation that is known to be induced by developmental exposure to TCE.
期刊介绍:
The Journal of Immunotoxicology is an open access, peer-reviewed journal that provides a needed singular forum for the international community of immunotoxicologists, immunologists, and toxicologists working in academia, government, consulting, and industry to both publish their original research and be made aware of the research findings of their colleagues in a timely manner. Research from many subdisciplines are presented in the journal, including the areas of molecular, developmental, pulmonary, regulatory, nutritional, mechanistic, wildlife, and environmental immunotoxicology, immunology, and toxicology. Original research articles as well as timely comprehensive reviews are published.