Baseline Regularization for Computational Drug Repositioning with Longitudinal Observational Data.

Zhaobin Kuang, James Thomson, Michael Caldwell, Peggy Peissig, Ron Stewart, David Page
{"title":"Baseline Regularization for Computational Drug Repositioning with Longitudinal Observational Data.","authors":"Zhaobin Kuang,&nbsp;James Thomson,&nbsp;Michael Caldwell,&nbsp;Peggy Peissig,&nbsp;Ron Stewart,&nbsp;David Page","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Computational Drug Repositioning (CDR) is the knowledge discovery process of finding new indications for existing drugs leveraging heterogeneous drug-related data. Longitudinal observational data such as Electronic Health Records (EHRs) have become an emerging data source for CDR. To address the high-dimensional, irregular, subject and time-heterogeneous nature of EHRs, we propose Baseline Regularization (BR) and a variant that extend the one-way fixed effect model, which is a standard approach to analyze small-scale longitudinal data. For evaluation, we use the proposed methods to search for drugs that can lower Fasting Blood Glucose (FBG) level in the Marshfield Clinic EHR. Experimental results suggest that the proposed methods are capable of rediscovering drugs that can lower FBG level as well as identifying some potential blood sugar lowering drugs in the literature.</p>","PeriodicalId":73334,"journal":{"name":"IJCAI : proceedings of the conference","volume":"2016 ","pages":"2521-2528"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382966/pdf/nihms786212.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCAI : proceedings of the conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computational Drug Repositioning (CDR) is the knowledge discovery process of finding new indications for existing drugs leveraging heterogeneous drug-related data. Longitudinal observational data such as Electronic Health Records (EHRs) have become an emerging data source for CDR. To address the high-dimensional, irregular, subject and time-heterogeneous nature of EHRs, we propose Baseline Regularization (BR) and a variant that extend the one-way fixed effect model, which is a standard approach to analyze small-scale longitudinal data. For evaluation, we use the proposed methods to search for drugs that can lower Fasting Blood Glucose (FBG) level in the Marshfield Clinic EHR. Experimental results suggest that the proposed methods are capable of rediscovering drugs that can lower FBG level as well as identifying some potential blood sugar lowering drugs in the literature.

Abstract Image

Abstract Image

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纵向观测数据计算药物重新定位的基线正则化。
计算药物重新定位(CDR)是利用异构药物相关数据为现有药物寻找新适应症的知识发现过程。电子健康记录(EHRs)等纵向观测数据已成为CDR的新兴数据源。为了解决电子病历的高维、不规则、主体和时间异质性,我们提出了基线正则化(Baseline Regularization, BR)和一种扩展单向固定效应模型的变体,这是一种分析小尺度纵向数据的标准方法。为了评估,我们使用提出的方法在Marshfield诊所EHR中寻找可以降低空腹血糖(FBG)水平的药物。实验结果表明,所提出的方法能够重新发现降低FBG水平的药物,并在文献中发现一些潜在的降血糖药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive Modeling with Temporal Graphical Representation on Electronic Health Records. Adapt to Adaptation: Learning Personalization for Cross-Silo Federated Learning. Stabilizing and Enhancing Link Prediction through Deepened Graph Auto-Encoders. RCA: A Deep Collaborative Autoencoder Approach for Anomaly Detection Improving Attention Mechanism in Graph Neural Networks via Cardinality Preservation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1