Phylogenetic Inference Using RevBayes.

Q1 Biochemistry, Genetics and Molecular Biology Current protocols in bioinformatics Pub Date : 2017-05-02 DOI:10.1002/cpbi.22
Sebastian Höhna, Michael J Landis, Tracy A Heath
{"title":"Phylogenetic Inference Using RevBayes.","authors":"Sebastian Höhna,&nbsp;Michael J Landis,&nbsp;Tracy A Heath","doi":"10.1002/cpbi.22","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian phylogenetic inference aims to estimate the evolutionary relationships among different lineages (species, populations, gene families, viral strains, etc.) in a model-based statistical framework that uses the likelihood function for parameter estimates. In recent years, evolutionary models for Bayesian analysis have grown in number and complexity. RevBayes uses a probabilistic-graphical model framework and an interactive scripting language for model specification to accommodate and exploit model diversity and complexity within a single software package. In this unit we describe how to specify standard phylogenetic models and perform Bayesian phylogenetic analyses in RevBayes. The protocols focus on the basic analysis of inferring a phylogeny from single and multiple loci, describe a hypothesis-testing approach, and point to advanced topics. Thus, this unit is a starting point to illustrate the power and potential of Bayesian inference under complex phylogenetic models in RevBayes. © 2017 by John Wiley & Sons, Inc.</p>","PeriodicalId":10958,"journal":{"name":"Current protocols in bioinformatics","volume":"57 ","pages":"6.16.1-6.16.34"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpbi.22","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpbi.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 26

Abstract

Bayesian phylogenetic inference aims to estimate the evolutionary relationships among different lineages (species, populations, gene families, viral strains, etc.) in a model-based statistical framework that uses the likelihood function for parameter estimates. In recent years, evolutionary models for Bayesian analysis have grown in number and complexity. RevBayes uses a probabilistic-graphical model framework and an interactive scripting language for model specification to accommodate and exploit model diversity and complexity within a single software package. In this unit we describe how to specify standard phylogenetic models and perform Bayesian phylogenetic analyses in RevBayes. The protocols focus on the basic analysis of inferring a phylogeny from single and multiple loci, describe a hypothesis-testing approach, and point to advanced topics. Thus, this unit is a starting point to illustrate the power and potential of Bayesian inference under complex phylogenetic models in RevBayes. © 2017 by John Wiley & Sons, Inc.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RevBayes的系统发育推断。
贝叶斯系统发育推断的目的是在基于模型的统计框架中估计不同谱系(物种、种群、基因家族、病毒株等)之间的进化关系,该框架使用似然函数进行参数估计。近年来,用于贝叶斯分析的进化模型在数量和复杂性方面都有所增长。RevBayes使用概率图形模型框架和交互式脚本语言进行模型规范,以适应和利用单个软件包中的模型多样性和复杂性。在本单元中,我们描述了如何在RevBayes中指定标准系统发育模型并执行贝叶斯系统发育分析。该方案侧重于从单个和多个基因座推断系统发育的基本分析,描述了一种假设检验方法,并指出了高级主题。因此,本单元是一个起点,说明在RevBayes复杂系统发育模型下贝叶斯推理的力量和潜力。©2017 by John Wiley & Sons, Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current protocols in bioinformatics
Current protocols in bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
0.00%
发文量
0
期刊介绍: With Current Protocols in Bioinformatics, it"s easier than ever for the life scientist to become "fluent" in bioinformatics and master the exciting new frontiers opened up by DNA sequencing. Updated every three months in all formats, CPBI is constantly evolving to keep pace with the very latest discoveries and developments.
期刊最新文献
Issue Information Protein Sequence Analysis Using the MPI Bioinformatics Toolkit Exploring Manually Curated Annotations of Intrinsically Disordered Proteins with DisProt Network Building with the Cytoscape BioGateway App Explained in Five Use Cases Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1