Utility of a multimodal neurophysiologic assessment tool in distinguishing between individuals with and without a history of mild traumatic brain injury.
Martin Baruch, Jeffrey T Barth, David Cifu, Martin Leibman
{"title":"Utility of a multimodal neurophysiologic assessment tool in distinguishing between individuals with and without a history of mild traumatic brain injury.","authors":"Martin Baruch, Jeffrey T Barth, David Cifu, Martin Leibman","doi":"10.1682/JRRD.2015.06.0120","DOIUrl":null,"url":null,"abstract":"<p><p>This was a preliminary validation study of a multimodal concussion assessment battery incorporating eye-tracking, balance, and neurocognitive tests on a new hardware platform, the Computerized Brain Injury Assessment System. Using receiver-operating characteristics analyses, (1) we identified a subset of the most discriminating neurophysiological assessment tests involving smooth pursuit eye movement tracking errors, corrective saccade counts, a balance score ratio sensitive to vestibular balance performance, and two neurocognitive tests of response speed and memory/incidental learning; (2) we demonstrated the enhancement in discriminatory capability of detecting concussion-related deficits through the combination of the identified subset of assessments; and (3) we demonstrated the effectiveness of a robust and readily implemented global scoring approach was demonstrated for both eye track and balance assessment tests. These results are significant in introducing a comprehensive solution for concussion assessment that incorporates an economical, compact, and mobile hardware system and an assessment battery that is multimodal and time efficient and whose efficacy has been demonstrated on a preliminary basis. This represents a significant step toward the goal of a system capable of making a dependable return-to-play/duty determination based on concussion likelihood.</p>","PeriodicalId":50065,"journal":{"name":"Journal of Rehabilitation Research and Development","volume":"53 6","pages":"959-972"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1682/JRRD.2015.06.0120","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rehabilitation Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1682/JRRD.2015.06.0120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 6
Abstract
This was a preliminary validation study of a multimodal concussion assessment battery incorporating eye-tracking, balance, and neurocognitive tests on a new hardware platform, the Computerized Brain Injury Assessment System. Using receiver-operating characteristics analyses, (1) we identified a subset of the most discriminating neurophysiological assessment tests involving smooth pursuit eye movement tracking errors, corrective saccade counts, a balance score ratio sensitive to vestibular balance performance, and two neurocognitive tests of response speed and memory/incidental learning; (2) we demonstrated the enhancement in discriminatory capability of detecting concussion-related deficits through the combination of the identified subset of assessments; and (3) we demonstrated the effectiveness of a robust and readily implemented global scoring approach was demonstrated for both eye track and balance assessment tests. These results are significant in introducing a comprehensive solution for concussion assessment that incorporates an economical, compact, and mobile hardware system and an assessment battery that is multimodal and time efficient and whose efficacy has been demonstrated on a preliminary basis. This represents a significant step toward the goal of a system capable of making a dependable return-to-play/duty determination based on concussion likelihood.