Quintanar-Stephano A. , Ventura-Juárez J. , Sánchez-Alemán E. , Aldaba-Muruato L.R. , Cervantes-García D. , Gonzalez-Blas D. , Muñoz-Ortega M.H.
{"title":"Liver cirrhosis reversion is improved in hamsters with a neurointermediate pituitary lobectomy","authors":"Quintanar-Stephano A. , Ventura-Juárez J. , Sánchez-Alemán E. , Aldaba-Muruato L.R. , Cervantes-García D. , Gonzalez-Blas D. , Muñoz-Ortega M.H.","doi":"10.1016/j.etp.2017.04.006","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Regulating mechanisms of fibrosis is an important goal in the </span>treatment<span> of fibrosis and liver cirrhosis. The role of </span></span>arginine vasopressin<span> (AVP) in promoting fibrosis in several organs has been well documented. However, the result of an AVP deficiency during liver fibrosis<span> has not been reported. We herein study the effects of an AVP deficiency, which was induced by neurointermediate pituitary lobectomy (NIL), on liver cirrhosis and liver cirrhosis reversion. Hamsters were intact (control) or underwent CCl</span></span></span><sub>4</sub><span><span><span>-induced cirrhosis, the latter animals divided into four groups: Cirrhotic, NIL-cirrhotic, Cirrhotic-reversion (R) and NIL-cirrhotic-R. Liver function, liver histopathology (including the fibrosis area and collagen types) and liver expression of MMP-13 and TIMP-2 were assessed. Results show that the AVP deficiency decreased the levels of </span>alkaline phosphatase<span> in serum and the expression of type I collagen and TIMP-2, and increased </span></span>type III collagen<span> deposition, MMP-13 expression and the size of regeneration nodules in NIL-cirrhotic and NIL-cirrhotic-R animals. A significantly greater recovery was found in the NIL-cirrhotic-R than the Cirrhotic-R group. We conclude that an AVP deficiency participates importantly in hamster liver regeneration<span> by: 1) prompting the fibroblasts to produce type III collagen deposit, 2) influencing the activity of AP from bile duct cells, and 3) inhibiting TIMP-2 expression while favoring the fibrolytic activity of MMP-13.</span></span></span></p></div>","PeriodicalId":50465,"journal":{"name":"Experimental and Toxicologic Pathology","volume":"69 7","pages":"Pages 496-503"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.etp.2017.04.006","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Toxicologic Pathology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0940299316302329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 4
Abstract
Regulating mechanisms of fibrosis is an important goal in the treatment of fibrosis and liver cirrhosis. The role of arginine vasopressin (AVP) in promoting fibrosis in several organs has been well documented. However, the result of an AVP deficiency during liver fibrosis has not been reported. We herein study the effects of an AVP deficiency, which was induced by neurointermediate pituitary lobectomy (NIL), on liver cirrhosis and liver cirrhosis reversion. Hamsters were intact (control) or underwent CCl4-induced cirrhosis, the latter animals divided into four groups: Cirrhotic, NIL-cirrhotic, Cirrhotic-reversion (R) and NIL-cirrhotic-R. Liver function, liver histopathology (including the fibrosis area and collagen types) and liver expression of MMP-13 and TIMP-2 were assessed. Results show that the AVP deficiency decreased the levels of alkaline phosphatase in serum and the expression of type I collagen and TIMP-2, and increased type III collagen deposition, MMP-13 expression and the size of regeneration nodules in NIL-cirrhotic and NIL-cirrhotic-R animals. A significantly greater recovery was found in the NIL-cirrhotic-R than the Cirrhotic-R group. We conclude that an AVP deficiency participates importantly in hamster liver regeneration by: 1) prompting the fibroblasts to produce type III collagen deposit, 2) influencing the activity of AP from bile duct cells, and 3) inhibiting TIMP-2 expression while favoring the fibrolytic activity of MMP-13.
期刊介绍:
Cessation. The international multidisciplinary journal is devoted to the publication of studies covering the whole range of experimental research on disease processes and toxicology including cell biological investigations. Its aim is to support progress in the interdisciplinary cooperation of researchers working in pathobiology, toxicology, and cell biology independent of the methods applied. During the past decades increasing attention has been paid to the importance of toxic influence in the pathogenesis of human and animal diseases. This is why Experimental and Toxicologic Pathology meets the urgent need for an interdisciplinary journal felt by a wide variety of experts in medicine and biology, including pathologists, toxicologists, biologists, physicians, veterinary surgeons, pharmacists, and pharmacologists working in academic, industrial or clinical institutions.