{"title":"Methods for studying the metabolic basis of Drosophila development.","authors":"Hongde Li, Jason M Tennessen","doi":"10.1002/wdev.280","DOIUrl":null,"url":null,"abstract":"<p><p>The field of metabolic research has experienced an unexpected renaissance. While this renewed interest in metabolism largely originated in response to the global increase in diabetes and obesity, studies of metabolic regulation now represent the frontier of many biomedical fields. This trend is especially apparent in developmental biology, where metabolism influences processes ranging from stem cell differentiation and tissue growth to sexual maturation and reproduction. In this regard, the fruit fly Drosophila melanogaster has emerged as a powerful tool for dissecting conserved mechanisms that underlie developmental metabolism, often with a level of detail that is simply not possible in other animals. Here we describe why the fly is an ideal system for exploring the relationship between metabolism and development, and outline a basic experimental strategy for conducting these studies. WIREs Dev Biol 2017, 6:e280. doi: 10.1002/wdev.280 For further resources related to this article, please visit the WIREs website.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"6 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.280","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/5/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 23
Abstract
The field of metabolic research has experienced an unexpected renaissance. While this renewed interest in metabolism largely originated in response to the global increase in diabetes and obesity, studies of metabolic regulation now represent the frontier of many biomedical fields. This trend is especially apparent in developmental biology, where metabolism influences processes ranging from stem cell differentiation and tissue growth to sexual maturation and reproduction. In this regard, the fruit fly Drosophila melanogaster has emerged as a powerful tool for dissecting conserved mechanisms that underlie developmental metabolism, often with a level of detail that is simply not possible in other animals. Here we describe why the fly is an ideal system for exploring the relationship between metabolism and development, and outline a basic experimental strategy for conducting these studies. WIREs Dev Biol 2017, 6:e280. doi: 10.1002/wdev.280 For further resources related to this article, please visit the WIREs website.
期刊介绍:
Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology.
The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.