{"title":"Path Loss Measurement and Channel Modeling with Muscular Tissue Characteristics.","authors":"Yu-Ping Qin, Shuang Zhang, Hai-Yan Liu, Yi-He Liu, You-Zhi Li, Xue Peng, Xiu Ma, Qi-Li Li, Xuan Huang","doi":"10.2174/1874120701711010001","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The galvanic coupling intra-body communication has low radiation and strong anti-interference ability, so it has many advantages in the wireless communication.</p><p><strong>Method: </strong>In order to analyze the effect of muscle tissue's characteristics upon the communication channel, we selected the muscle of pig buttock as the experimental sample, and used it to study the attenuation property with the galvanic coupling intra-body communication channel along the parallel direction and the transverse direction relative to the muscular fibre line as well as on the surface of destroyed muscular fibre; the study frequency ranges from 1kHz to 10MHz.In the isotropic experiment, in order to destroy muscle's fibre characteristics, we grinded the muscle four times, at least five minutes for each time. 0dbm sine-wave signal was input to measure the channel attenuation parameter S21 when the transmitter and the receiver were placed at different positions and different distances d1 and d2 (20mm, 40mm, 60mm), so as to analyze channel loss.</p><p><strong>Conclusion: </strong>Within the same frequency range and at the same communication distance, the maximum error of channel attenuation was 10dB; within the same frequency, as the communication distance was increased, the channel attenuation rose gradually, with 4dB increased every 20mm. The conclusion provides the basis for building the theoretical model in the future.</p>","PeriodicalId":39121,"journal":{"name":"Open Biomedical Engineering Journal","volume":"11 ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/15/6e/TOBEJ-11-1.PMC5421105.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biomedical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874120701711010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2
Abstract
Background: The galvanic coupling intra-body communication has low radiation and strong anti-interference ability, so it has many advantages in the wireless communication.
Method: In order to analyze the effect of muscle tissue's characteristics upon the communication channel, we selected the muscle of pig buttock as the experimental sample, and used it to study the attenuation property with the galvanic coupling intra-body communication channel along the parallel direction and the transverse direction relative to the muscular fibre line as well as on the surface of destroyed muscular fibre; the study frequency ranges from 1kHz to 10MHz.In the isotropic experiment, in order to destroy muscle's fibre characteristics, we grinded the muscle four times, at least five minutes for each time. 0dbm sine-wave signal was input to measure the channel attenuation parameter S21 when the transmitter and the receiver were placed at different positions and different distances d1 and d2 (20mm, 40mm, 60mm), so as to analyze channel loss.
Conclusion: Within the same frequency range and at the same communication distance, the maximum error of channel attenuation was 10dB; within the same frequency, as the communication distance was increased, the channel attenuation rose gradually, with 4dB increased every 20mm. The conclusion provides the basis for building the theoretical model in the future.