Effects of High-Fat Feeding on Skeletal Muscle Gene Expression in Diabetic Goto-Kakizaki Rats.

Gene regulation and systems biology Pub Date : 2017-05-29 eCollection Date: 2017-01-01 DOI:10.1177/1177625017710009
Jing Nie, Debra C DuBois, Bai Xue, William J Jusko, Richard R Almon
{"title":"Effects of High-Fat Feeding on Skeletal Muscle Gene Expression in Diabetic Goto-Kakizaki Rats.","authors":"Jing Nie,&nbsp;Debra C DuBois,&nbsp;Bai Xue,&nbsp;William J Jusko,&nbsp;Richard R Almon","doi":"10.1177/1177625017710009","DOIUrl":null,"url":null,"abstract":"<p><p>In the present report, we examined the responses of diabetic Goto-Kakizaki (GK) rats and control Wistar-Kyoto (WKY) rats fed either a standard chow or high-fat diet (HFD) from weaning to 20 weeks of age. This comparison included gene expression profiling of skeletal muscle using Affymetrix gene array chips. The expression profiling is interpreted within the context of a wide array of physiological measurements. Genes whose expressions are different between the 2 strains regardless of diet, as well as genes that differ between strains only with HFD, were identified. In addition, genes that were regulated by diet in 1 or both strains were identified. The results suggest that both strains respond to HFD by an increased capacity to oxidize lipid fuels in the musculature but that this adaptation occurs more rapidly in WKY rats. The results also demonstrated an impaired cytokine signalling and heightened inflammatory status in the GK rats.</p>","PeriodicalId":73138,"journal":{"name":"Gene regulation and systems biology","volume":"11 ","pages":"1177625017710009"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1177625017710009","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene regulation and systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1177625017710009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In the present report, we examined the responses of diabetic Goto-Kakizaki (GK) rats and control Wistar-Kyoto (WKY) rats fed either a standard chow or high-fat diet (HFD) from weaning to 20 weeks of age. This comparison included gene expression profiling of skeletal muscle using Affymetrix gene array chips. The expression profiling is interpreted within the context of a wide array of physiological measurements. Genes whose expressions are different between the 2 strains regardless of diet, as well as genes that differ between strains only with HFD, were identified. In addition, genes that were regulated by diet in 1 or both strains were identified. The results suggest that both strains respond to HFD by an increased capacity to oxidize lipid fuels in the musculature but that this adaptation occurs more rapidly in WKY rats. The results also demonstrated an impaired cytokine signalling and heightened inflammatory status in the GK rats.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高脂肪喂养对糖尿病后藤- kakizaki大鼠骨骼肌基因表达的影响
在本报告中,我们研究了糖尿病大鼠Goto-Kakizaki (GK)和对照组Wistar-Kyoto (WKY)大鼠从断奶到20周龄分别饲喂标准食物或高脂肪饮食(HFD)的反应。该比较包括使用Affymetrix基因阵列芯片对骨骼肌进行基因表达谱分析。表达谱是在广泛的生理测量范围内解释的。发现了两种菌株在不同饮食条件下表达不同的基因,以及仅在HFD条件下表达不同的基因。此外,还鉴定了1株或2株菌株中受饮食调节的基因。结果表明,这两个品系对HFD的反应都是通过增加肌肉组织中氧化脂质燃料的能力,但这种适应在WKY大鼠中发生得更快。结果还表明,GK大鼠的细胞因子信号传导受损,炎症状态升高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pathway-Based Analysis of the Liver Response to Intravenous Methylprednisolone Administration in Rats: Acute Versus Chronic Dosing. Temporal and Spatial Differential Expression of Glutamate Receptor Genes in the Brain of Down Syndrome Introductory Chapter: Gene Regulation, an RNA Network-Dependent Architecture Model-based Evaluation of Gene Expression Changes in Response to Leishmania Infection. Gene Activation by the Cytokine-Driven Transcription Factor STAT1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1