Functionally and morphologically damaged mitochondria observed in auditory cells under senescence-inducing stress.

IF 5.4 Q1 GERIATRICS & GERONTOLOGY NPJ Aging and Mechanisms of Disease Pub Date : 2017-01-25 eCollection Date: 2017-01-01 DOI:10.1038/s41514-017-0002-2
Teru Kamogashira, Ken Hayashi, Chisato Fujimoto, Shinichi Iwasaki, Tatsuya Yamasoba
{"title":"Functionally and morphologically damaged mitochondria observed in auditory cells under senescence-inducing stress.","authors":"Teru Kamogashira,&nbsp;Ken Hayashi,&nbsp;Chisato Fujimoto,&nbsp;Shinichi Iwasaki,&nbsp;Tatsuya Yamasoba","doi":"10.1038/s41514-017-0002-2","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed at determining the mitochondrial function in premature senescence model of auditory cells. Short exposure to H<sub>2</sub>O<sub>2</sub> (1 h, 0.1 mM) induced premature cellular senescence in House Ear Institute-Organ of Corti 1 auditory cells. The transmission electron microscopy analysis revealed that damaged mitochondria and autophagosomes containing dense organelles appeared in the auditory cells after short exposure to H<sub>2</sub>O<sub>2</sub>. The branch and junction parameters of the skeletonized image of the mitochondria were found to decrease significantly in H<sub>2</sub>O<sub>2</sub>-treated cells. A branched reticulum of tubules was poorly formed, featuring coexistence of numerous tiny clusters along with few relatively large entities in the H<sub>2</sub>O<sub>2</sub>-treated cells. In terms of bioenergetics, H<sub>2</sub>O<sub>2</sub>-treatment led to the dose-dependent decrease in mitochondrial membrane potential in the auditory cells. The fragmented mitochondria (fusion < fission) were in a low potential. In addition, the potential of hyperfused mitochondria (fusion > fission) was slightly lower than the control cells. The short-time exposure of live auditory cells to H<sub>2</sub>O<sub>2</sub> damaged the mitochondrial respiratory capacity without any effect on the baseline ATP production rates. The vulnerability of the mitochondrial membrane potential to the uncoupling reagent was increased after H<sub>2</sub>O<sub>2</sub> treatment. Our findings indicated that the mitochondrial dysfunction due to the decline in the O<sub>2</sub> consumption rate should be the first event of premature senescence process in the auditory cells, resulting in the imbalance of mitochondrial fusion/fission and the collapse of the mitochondrial network.</p>","PeriodicalId":19334,"journal":{"name":"NPJ Aging and Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2017-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41514-017-0002-2","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Aging and Mechanisms of Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-017-0002-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

We aimed at determining the mitochondrial function in premature senescence model of auditory cells. Short exposure to H2O2 (1 h, 0.1 mM) induced premature cellular senescence in House Ear Institute-Organ of Corti 1 auditory cells. The transmission electron microscopy analysis revealed that damaged mitochondria and autophagosomes containing dense organelles appeared in the auditory cells after short exposure to H2O2. The branch and junction parameters of the skeletonized image of the mitochondria were found to decrease significantly in H2O2-treated cells. A branched reticulum of tubules was poorly formed, featuring coexistence of numerous tiny clusters along with few relatively large entities in the H2O2-treated cells. In terms of bioenergetics, H2O2-treatment led to the dose-dependent decrease in mitochondrial membrane potential in the auditory cells. The fragmented mitochondria (fusion < fission) were in a low potential. In addition, the potential of hyperfused mitochondria (fusion > fission) was slightly lower than the control cells. The short-time exposure of live auditory cells to H2O2 damaged the mitochondrial respiratory capacity without any effect on the baseline ATP production rates. The vulnerability of the mitochondrial membrane potential to the uncoupling reagent was increased after H2O2 treatment. Our findings indicated that the mitochondrial dysfunction due to the decline in the O2 consumption rate should be the first event of premature senescence process in the auditory cells, resulting in the imbalance of mitochondrial fusion/fission and the collapse of the mitochondrial network.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
衰老诱导应激下听觉细胞线粒体功能和形态损伤。
目的探讨听觉细胞早衰模型中线粒体功能的变化。短时间暴露于H2O2 (1 h, 0.1 mM)可诱导Corti 1型内耳听觉器官细胞过早衰老。透射电镜分析显示,短时间接触H2O2后,听觉细胞出现线粒体和含有致密细胞器的自噬体损伤。在h2o2处理的细胞中,线粒体骨架图像的分支和连接参数显著降低。在h2o2处理的细胞中,一个分枝的小管网形成不良,具有许多微小簇和少数相对较大的实体共存的特点。在生物能学方面,h2o2处理导致听细胞线粒体膜电位呈剂量依赖性降低。线粒体碎片化(融合裂变)略低于对照细胞。活体听觉细胞短时间暴露于H2O2会损伤线粒体呼吸能力,但对基线ATP生成率没有影响。H2O2处理后,线粒体膜电位对解偶联剂的易损性增加。我们的研究结果表明,由耗氧量下降引起的线粒体功能障碍应该是听觉细胞过早衰老过程的第一个事件,导致线粒体融合/裂变失衡,线粒体网络崩溃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NPJ Aging and Mechanisms of Disease
NPJ Aging and Mechanisms of Disease Medicine-Geriatrics and Gerontology
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊介绍: npj Aging and Mechanisms of Disease is an online open access journal that provides a forum for the world’s most important research in the fields of aging and aging-related disease. The journal publishes papers from all relevant disciplines, encouraging those that shed light on the mechanisms behind aging and the associated diseases. The journal’s scope includes, but is not restricted to, the following areas (not listed in order of preference): • cellular and molecular mechanisms of aging and aging-related diseases • interventions to affect the process of aging and longevity • homeostatic regulation and aging • age-associated complications • translational research into prevention and treatment of aging-related diseases • mechanistic bases for epidemiological aspects of aging-related disease.
期刊最新文献
EPB41L4A-AS1 is required to maintain basal autophagy to modulates Aβ clearance Dynamics of Wnt/β-catenin reporter activity throughout whole life in a naturally short-lived vertebrate Healthcare on the brink: navigating the challenges of an aging society in the United States Oxidative damage in the gastrocnemius predicts long-term survival in patients with peripheral artery disease The use of a systems approach to increase NAD+ in human participants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1