Use of a special Brazilian red-light emitting railroad worm Luciferase in bioassays of NEK7 protein Kinase and Creatine Kinase.

Q2 Biochemistry, Genetics and Molecular Biology BMC Biochemistry Pub Date : 2017-07-19 DOI:10.1186/s12858-017-0087-z
Arina Marina Perez, Bruno Aquino, Vadim Viviani, Jörg Kobarg
{"title":"Use of a special Brazilian red-light emitting railroad worm Luciferase in bioassays of NEK7 protein Kinase and Creatine Kinase.","authors":"Arina Marina Perez,&nbsp;Bruno Aquino,&nbsp;Vadim Viviani,&nbsp;Jörg Kobarg","doi":"10.1186/s12858-017-0087-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Luciferases, enzymes that catalyze bioluminescent reactions in different organisms, have been extensively used for bioanalytical purposes. The most well studied bioluminescent system is that of firefly and other beetles, which depends on a luciferase, a benzothiazolic luciferin and ATP, and it is being widely used as a bioanalytical reagent to quantify ATP. Protein kinases are proteins that modify other proteins by transferring phosphate groups from a nucleoside triphosphate, usually ATP.</p><p><strong>Methods: </strong>Here, we used a red-light emitting luciferase from Phrixotrix hirtus railroad worm to determine the activity of kinases in a coupled assay, based on luminescence that is generated when luciferase is in the presence of its substrate, the luciferin, and ATP.</p><p><strong>Results: </strong>In this work we used, after several optimization reactions, creatine kinase isoforms as well as NEK7 protein kinase in the absence or presence of ATP analogous inhibitors  to validate this new luminescence method.</p><p><strong>Conclusion: </strong>With this new approach we validated a luminescence method to quantify kinase activity, with different substrates and inhibition screening tests, using a novel red-light emitting luciferase as a reporter enzyme.</p>","PeriodicalId":9113,"journal":{"name":"BMC Biochemistry","volume":"18 1","pages":"12"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12858-017-0087-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12858-017-0087-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Luciferases, enzymes that catalyze bioluminescent reactions in different organisms, have been extensively used for bioanalytical purposes. The most well studied bioluminescent system is that of firefly and other beetles, which depends on a luciferase, a benzothiazolic luciferin and ATP, and it is being widely used as a bioanalytical reagent to quantify ATP. Protein kinases are proteins that modify other proteins by transferring phosphate groups from a nucleoside triphosphate, usually ATP.

Methods: Here, we used a red-light emitting luciferase from Phrixotrix hirtus railroad worm to determine the activity of kinases in a coupled assay, based on luminescence that is generated when luciferase is in the presence of its substrate, the luciferin, and ATP.

Results: In this work we used, after several optimization reactions, creatine kinase isoforms as well as NEK7 protein kinase in the absence or presence of ATP analogous inhibitors  to validate this new luminescence method.

Conclusion: With this new approach we validated a luminescence method to quantify kinase activity, with different substrates and inhibition screening tests, using a novel red-light emitting luciferase as a reporter enzyme.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种特殊的巴西红光发射铁路蠕虫荧光素酶用于NEK7蛋白激酶和肌酸激酶的生物测定。
背景:荧光素酶是一种在不同生物体中催化生物发光反应的酶,已广泛用于生物分析目的。目前研究最多的生物发光系统是萤火虫和其他甲虫的发光系统,它依赖于一种荧光素酶、一种苯并噻唑类荧光素和三磷酸腺苷,它被广泛用作一种生物分析试剂来定量三磷酸腺苷。蛋白激酶是一种通过从三磷酸核苷(通常是ATP)转移磷酸基团来修饰其他蛋白质的蛋白质。方法:在这里,我们使用来自Phrixotrix hirtus铁路蠕虫的红光荧光素酶,基于荧光素酶在其底物、荧光素和ATP存在时产生的发光,在耦合实验中确定激酶的活性。结果:在这项工作中,我们使用了几个优化反应,肌酸激酶异构体和NEK7蛋白激酶在没有或存在ATP类似抑制剂的情况下验证了这种新的发光方法。结论:我们利用一种新的红光荧光素酶作为报告酶,通过不同底物和抑制筛选试验,验证了一种定量激酶活性的发光方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Biochemistry
BMC Biochemistry BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
4.80
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: BMC Biochemistry is an open access journal publishing original peer-reviewed research articles in all aspects of biochemical processes, including the structure, function and dynamics of metabolic pathways, supramolecular complexes, enzymes, proteins, nucleic acids and small molecular components of organelles, cells and tissues. BMC Biochemistry (ISSN 1471-2091) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, EMBASE, Scopus, Zoological Record, Thomson Reuters (ISI) and Google Scholar.
期刊最新文献
Application of WST-8 based colorimetric NAD(P)H detection for quantitative dehydrogenase assays. Association of TM6SF2 rs58542926 gene polymorphism with the risk of non-alcoholic fatty liver disease and colorectal adenoma in Chinese Han population. The active role of the transcription factor Sp1 in NFATc2-mediated gene regulation in pancreatic cancer. Role of the highly conserved G68 residue in the yeast phosphorelay protein Ypd1: implications for interactions between histidine phosphotransfer (HPt) and response regulator proteins. Up-regulation of DcR3 in microbial toxins-stimulated HUVECs involves NF-κB signalling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1