Systematic review: YouTube recommendations and problematic content.

IF 3.6 Q1 COMMUNICATION Internet Policy Review Pub Date : 2022-03-31 DOI:10.14763/2022.1.1652
Muhsin Yesilada, Stephan Lewandowsky
{"title":"Systematic review: YouTube recommendations and problematic content.","authors":"Muhsin Yesilada,&nbsp;Stephan Lewandowsky","doi":"10.14763/2022.1.1652","DOIUrl":null,"url":null,"abstract":"<p><p>There has been much concern that social media, in particular YouTube, may facilitate radicalisation and polarisation of online audiences. This systematic review aimed to determine whether the YouTube recommender system facilitates pathways to problematic content such as extremist or radicalising material. The review conducted a narrative synthesis of the papers in this area. It assessed the eligibility of 1,187 studies and excluded studies using the PRISMA process for systematic reviews, leaving a final sample of 23 studies. Overall, 14 studies implicated the YouTube recommender system in facilitating problematic content pathways, seven produced mixed results, and two did not implicate the recommender system. The review's findings indicate that the YouTube recommender system could lead users to problematic content. However, due to limited access and an incomplete understanding of the YouTube recommender system, the models built by researchers might not reflect the actual mechanisms underlying the YouTube recommender system and pathways to problematic content.</p>","PeriodicalId":45799,"journal":{"name":"Internet Policy Review","volume":"11 1","pages":"1652"},"PeriodicalIF":3.6000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613872/pdf/","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Policy Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14763/2022.1.1652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 17

Abstract

There has been much concern that social media, in particular YouTube, may facilitate radicalisation and polarisation of online audiences. This systematic review aimed to determine whether the YouTube recommender system facilitates pathways to problematic content such as extremist or radicalising material. The review conducted a narrative synthesis of the papers in this area. It assessed the eligibility of 1,187 studies and excluded studies using the PRISMA process for systematic reviews, leaving a final sample of 23 studies. Overall, 14 studies implicated the YouTube recommender system in facilitating problematic content pathways, seven produced mixed results, and two did not implicate the recommender system. The review's findings indicate that the YouTube recommender system could lead users to problematic content. However, due to limited access and an incomplete understanding of the YouTube recommender system, the models built by researchers might not reflect the actual mechanisms underlying the YouTube recommender system and pathways to problematic content.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
系统审查:YouTube推荐和有问题的内容。
很多人担心,社交媒体,尤其是YouTube,可能会助长在线观众的激进化和两极分化。这项系统审查旨在确定YouTube推荐系统是否为极端主义或激进材料等有问题的内容提供了途径。这篇综述对这一领域的论文进行了叙述性的综合。它评估了1187项研究的合格性,并排除了使用PRISMA流程进行系统评价的研究,最终样本为23项研究。总的来说,14项研究暗示YouTube推荐系统促进了有问题的内容路径,7项研究得出了混合结果,2项研究没有暗示推荐系统。审查的结果表明,YouTube推荐系统可能会导致用户看到有问题的内容。然而,由于有限的访问权限和对YouTube推荐系统的不完全理解,研究人员建立的模型可能无法反映YouTube推荐系统的实际机制和有问题内容的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
5.60%
发文量
30
审稿时长
10 weeks
期刊最新文献
Government responses to online disinformation unpacked Navigating the AI frontier: European parliamentary insights on bias and regulation, preceding the AI Act Regulatory capacity capture: the United Kingdom’s online safety regime A complicated picture: Media diversity in the case of Google’s video search during the pandemic Dis/Trust and data-driven technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1