{"title":"Treatment of neuromyelitis optica spectrum disorder: revisiting the complement system and other aspects of pathogenesis.","authors":"Markus Ponleitner, Paulus Stefan Rommer","doi":"10.1007/s10354-022-00987-2","DOIUrl":null,"url":null,"abstract":"<p><p>Neuromyelitis optica spectrum disorder (NMOSD) represents a rare neuroimmunological disease causing recurrent attacks and accumulation of permanent disability in affected patients. The discovery of the pathogenic IgG‑1 antibody targeting a water channel expressed in astrocytes, aquaporin 4, constitutes a milestone achievement. Subsequently, multiple pathophysiological aspects of this distinct disease entity have been investigated. Demyelinating lesions and axonal damage ensue from autoantibodies targeting an astroglial epitope. This conundrum has been addressed in the current disease model, where activation of the complement system as well as B cells and interleukin 6 (IL-6) emerged as key contributors. It is the aim of this review to address these factors in light of novel treatment compounds which reflect these pathophysiological concepts in aiming for attack prevention, thus reducing disease burden in patients with NMOSD.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"4-15"},"PeriodicalIF":17.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810999/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10354-022-00987-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) represents a rare neuroimmunological disease causing recurrent attacks and accumulation of permanent disability in affected patients. The discovery of the pathogenic IgG‑1 antibody targeting a water channel expressed in astrocytes, aquaporin 4, constitutes a milestone achievement. Subsequently, multiple pathophysiological aspects of this distinct disease entity have been investigated. Demyelinating lesions and axonal damage ensue from autoantibodies targeting an astroglial epitope. This conundrum has been addressed in the current disease model, where activation of the complement system as well as B cells and interleukin 6 (IL-6) emerged as key contributors. It is the aim of this review to address these factors in light of novel treatment compounds which reflect these pathophysiological concepts in aiming for attack prevention, thus reducing disease burden in patients with NMOSD.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.