Interleukin-23 regulates interleukin-17 expression in wounds, and its inhibition accelerates diabetic wound healing through the alteration of macrophage polarization
James Lee, Mathieu Paul Rodero, Jatin Patel, Davide Moi, Roberta Mazzieri, Kiarash Khosrotehrani
{"title":"Interleukin-23 regulates interleukin-17 expression in wounds, and its inhibition accelerates diabetic wound healing through the alteration of macrophage polarization","authors":"James Lee, Mathieu Paul Rodero, Jatin Patel, Davide Moi, Roberta Mazzieri, Kiarash Khosrotehrani","doi":"10.1096/fj.201700773R","DOIUrl":null,"url":null,"abstract":"<p>Inflammation is a critical phase in the healing of skin wounds. Excessive inflammation and inflammatory macrophages are known to cause impaired wound closure and outcome. This prompted us to test the role of IL-23 in IL-17 expression and in modulating wound inflammation and macrophage polarization. Full-thickness wounds (4 × 6 mm) were created on the dorsal surface of multiple genetically modified mouse models. Obese diabetic mouse wounds were treated with anti-IL-17A, anti-IL-23, or isotype-matched antibodies. We found IL-23- but not IL-12-deficient mice displayed significantly reduced IL-17 expression in wounds. This was rescued by delivery of recombinant IL-23. IL-23- and IL-17-deficient mice showed a significant increase in noninflammatory macrophages. Obese diabetic mice treated with anti-IL-17A and anti-IL-23p19 blocking antibodies had significantly improved wound reepithelialization. Similarly, IL-17<sup>−/−</sup> obese mice had accelerated wound closure, resulting in reduced iNOS expression and inflammatory macrophages while maintaining prohealing CD206 and lymphatic vessel endothelial hyaluronic acid receptor 1 (LYVE1)-expressing macrophages. This study highlights the importance of the IL-17 pathway in wound closure offering new possibilities of therapeutic intervention in chronic wounds.— Lee, J., Rodero, M. P., Patel, J., Moi, D., Mazzieri, R., Khosrotehrani, K. Interleukin-23 regulates interleukin-17 expression in wounds, and its inhibition accelerates diabetic wound healing through the alteration of macrophage polarization. <i>FASEB J.</i> 32, 2086–2094 (2018). www.fasebj.org</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"32 4","pages":"2086-2094"},"PeriodicalIF":4.2000,"publicationDate":"2018-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1096/fj.201700773R","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.201700773R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 39
Abstract
Inflammation is a critical phase in the healing of skin wounds. Excessive inflammation and inflammatory macrophages are known to cause impaired wound closure and outcome. This prompted us to test the role of IL-23 in IL-17 expression and in modulating wound inflammation and macrophage polarization. Full-thickness wounds (4 × 6 mm) were created on the dorsal surface of multiple genetically modified mouse models. Obese diabetic mouse wounds were treated with anti-IL-17A, anti-IL-23, or isotype-matched antibodies. We found IL-23- but not IL-12-deficient mice displayed significantly reduced IL-17 expression in wounds. This was rescued by delivery of recombinant IL-23. IL-23- and IL-17-deficient mice showed a significant increase in noninflammatory macrophages. Obese diabetic mice treated with anti-IL-17A and anti-IL-23p19 blocking antibodies had significantly improved wound reepithelialization. Similarly, IL-17−/− obese mice had accelerated wound closure, resulting in reduced iNOS expression and inflammatory macrophages while maintaining prohealing CD206 and lymphatic vessel endothelial hyaluronic acid receptor 1 (LYVE1)-expressing macrophages. This study highlights the importance of the IL-17 pathway in wound closure offering new possibilities of therapeutic intervention in chronic wounds.— Lee, J., Rodero, M. P., Patel, J., Moi, D., Mazzieri, R., Khosrotehrani, K. Interleukin-23 regulates interleukin-17 expression in wounds, and its inhibition accelerates diabetic wound healing through the alteration of macrophage polarization. FASEB J. 32, 2086–2094 (2018). www.fasebj.org
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.