Amorphous Silica-Promoted Lysine Dimerization: a Thermodynamic Prediction.

IF 1.9 4区 物理与天体物理 Q2 BIOLOGY Origins of Life and Evolution of Biospheres Pub Date : 2018-03-01 Epub Date: 2017-08-15 DOI:10.1007/s11084-017-9548-z
Norio Kitadai, Kumiko Nishiuchi, Akari Nishii, Keisuke Fukushi
{"title":"Amorphous Silica-Promoted Lysine Dimerization: a Thermodynamic Prediction.","authors":"Norio Kitadai,&nbsp;Kumiko Nishiuchi,&nbsp;Akari Nishii,&nbsp;Keisuke Fukushi","doi":"10.1007/s11084-017-9548-z","DOIUrl":null,"url":null,"abstract":"<p><p>It has long been suggested that mineral surfaces played a crucial role in the abiotic polymerization of amino acids that preceded the origin of life. Nevertheless, it remains unclear where the prebiotic process took place on the primitive Earth, because the amino acid-mineral interaction and its dependence on environmental conditions have yet to be understood adequately. Here we examined experimentally the adsorption of L-lysine (Lys) and its dimer (LysLys) on amorphous silica over a wide range of pH, ionic strength, adsorbate concentration, and the solid/water ratio, and determined the reaction stoichiometries and the equilibrium constants based on the extended triple-layer model (ETLM). The retrieved ETLM parameters were then used, in combination with the equilibrium constant for the peptide bond formation in bulk water, to calculate the Lys-LysLys equilibrium in the presence of amorphous silica under various aqueous conditions. Results showed that the silica surface favors Lys dimerization, and the influence varies greatly with changing environmental parameters. At slightly alkaline pH (pH 9) in the presence of a dilute NaCl (1 mM), the thermodynamically attainable LysLys from 0.1 mM Lys reached a concentration around 50 times larger than that calculated without silica. Because of the versatility of the ETLM, which has been applied to describe a wide variety of biomolecule-mineral interactions, future experiments with the reported methodology are expected to provide a significant constraint on the plausible geological settings for the condensation of monomers to polymers, and the subsequent chemical evolution of life.</p>","PeriodicalId":19614,"journal":{"name":"Origins of Life and Evolution of Biospheres","volume":"48 1","pages":"23-34"},"PeriodicalIF":1.9000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11084-017-9548-z","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Origins of Life and Evolution of Biospheres","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11084-017-9548-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 10

Abstract

It has long been suggested that mineral surfaces played a crucial role in the abiotic polymerization of amino acids that preceded the origin of life. Nevertheless, it remains unclear where the prebiotic process took place on the primitive Earth, because the amino acid-mineral interaction and its dependence on environmental conditions have yet to be understood adequately. Here we examined experimentally the adsorption of L-lysine (Lys) and its dimer (LysLys) on amorphous silica over a wide range of pH, ionic strength, adsorbate concentration, and the solid/water ratio, and determined the reaction stoichiometries and the equilibrium constants based on the extended triple-layer model (ETLM). The retrieved ETLM parameters were then used, in combination with the equilibrium constant for the peptide bond formation in bulk water, to calculate the Lys-LysLys equilibrium in the presence of amorphous silica under various aqueous conditions. Results showed that the silica surface favors Lys dimerization, and the influence varies greatly with changing environmental parameters. At slightly alkaline pH (pH 9) in the presence of a dilute NaCl (1 mM), the thermodynamically attainable LysLys from 0.1 mM Lys reached a concentration around 50 times larger than that calculated without silica. Because of the versatility of the ETLM, which has been applied to describe a wide variety of biomolecule-mineral interactions, future experiments with the reported methodology are expected to provide a significant constraint on the plausible geological settings for the condensation of monomers to polymers, and the subsequent chemical evolution of life.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无定形二氧化硅促进赖氨酸二聚化:热力学预测。
长期以来,人们一直认为矿物表面在生命起源之前氨基酸的非生物聚合中起着至关重要的作用。然而,由于氨基酸-矿物质的相互作用及其对环境条件的依赖性尚未得到充分的了解,因此尚不清楚益生元过程在原始地球上的发生地点。本文研究了l -赖氨酸(Lys)及其二聚体(LysLys)在不同pH、离子强度、吸附物浓度和固水比条件下在无定形二氧化硅上的吸附,并基于扩展三层模型(ETLM)确定了反应的化学计量学和平衡常数。然后使用检索到的ETLM参数,结合在大量水中肽键形成的平衡常数,计算在各种水条件下无定形二氧化硅存在下的lysl - lysys平衡。结果表明,二氧化硅表面有利于赖氨酸二聚化,且随环境参数的变化影响较大。在微碱性pH值(pH 9)和稀NaCl (1 mM)存在下,0.1 mM的lysys的热力学可得的lysys浓度达到了没有二氧化硅时的50倍左右。由于ETLM的通用性,它已被应用于描述各种生物分子-矿物相互作用,因此,使用所报道的方法进行的未来实验有望为单体缩聚成聚合物的合理地质环境以及随后的生命化学进化提供重要约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
15.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: The subject of the origin and early evolution of life is an inseparable part of the general discipline of Astrobiology. The journal Origins of Life and Evolution of Biospheres places special importance on the interconnection as well as the interdisciplinary nature of these fields, as is reflected in its subject coverage. While any scientific study which contributes to our understanding of the origins, evolution and distribution of life in the Universe is suitable for inclusion in the journal, some examples of important areas of interest are: prebiotic chemistry and the nature of Earth''s early environment, self-replicating and self-organizing systems, the theory of the RNA world and of other possible precursor systems, and the problem of the origin of the genetic code. Early evolution of life - as revealed by such techniques as the elucidation of biochemical pathways, molecular phylogeny, the study of Precambrian sediments and fossils and of major innovations in microbial evolution - forms a second focus. As a larger and more general context for these areas, Astrobiology refers to the origin and evolution of life in a cosmic setting, and includes interstellar chemistry, planetary atmospheres and habitable zones, the organic chemistry of comets, meteorites, asteroids and other small bodies, biological adaptation to extreme environments, life detection and related areas. Experimental papers, theoretical articles and authorative literature reviews are all appropriate forms for submission to the journal. In the coming years, Astrobiology will play an even greater role in defining the journal''s coverage and keeping Origins of Life and Evolution of Biospheres well-placed in this growing interdisciplinary field.
期刊最新文献
Adaptability, stability, and productivity of potato breeding clones and cultivars at high latitudes in Europe The effect of some vegetable origin oils used in different clove varieties against Meloidogyne incognita Plant growth and physiological responses of the invasive plant Acmella radicans to contrasting light and soil water conditions Therapeutic switching of metronidazole anti-cancerous compounds as anti SARS-COV-2 inhibitors: integration of QSAR, molecular docking, MD simulation and ADMET analysis Identification of climatic and management factors influencing wheat’s yield variability using AgMERRA dataset and DSSAT model across a temperate region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1