Benjamin Quachtran, Robert Hamilton, Fabien Scalzo
{"title":"Detection of Intracranial Hypertension using Deep Learning.","authors":"Benjamin Quachtran, Robert Hamilton, Fabien Scalzo","doi":"10.1109/ICPR.2016.7900010","DOIUrl":null,"url":null,"abstract":"<p><p>Intracranial Hypertension, a disorder characterized by elevated pressure in the brain, is typically monitored in neurointensive care and diagnosed only after elevation has occurred. This reaction-based method of treatment leaves patients at higher risk of additional complications in case of misdetection. The detection of intracranial hypertension has been the subject of many recent studies in an attempt to accurately characterize the causes of hypertension, specifically examining waveform morphology. We investigate the use of Deep Learning, a hierarchical form of machine learning, to model the relationship between hypertension and waveform morphology, giving us the ability to accurately detect presence hypertension. Data from 60 patients, showing intracranial pressure levels over a half hour time span, was used to evaluate the model. We divided each patient's recording into average normalized beats over 30 sec segments, assigning each beat a label of high (i.e. greater than 15 mmHg) or low intracranial pressure. The model was tested to predict the presence of elevated intracranial pressure. The algorithm was found to be 92.05± 2.25% accurate in detecting intracranial hypertension on our dataset.</p>","PeriodicalId":74516,"journal":{"name":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","volume":"2016 ","pages":"2491-2496"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICPR.2016.7900010","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2016.7900010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/4/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Intracranial Hypertension, a disorder characterized by elevated pressure in the brain, is typically monitored in neurointensive care and diagnosed only after elevation has occurred. This reaction-based method of treatment leaves patients at higher risk of additional complications in case of misdetection. The detection of intracranial hypertension has been the subject of many recent studies in an attempt to accurately characterize the causes of hypertension, specifically examining waveform morphology. We investigate the use of Deep Learning, a hierarchical form of machine learning, to model the relationship between hypertension and waveform morphology, giving us the ability to accurately detect presence hypertension. Data from 60 patients, showing intracranial pressure levels over a half hour time span, was used to evaluate the model. We divided each patient's recording into average normalized beats over 30 sec segments, assigning each beat a label of high (i.e. greater than 15 mmHg) or low intracranial pressure. The model was tested to predict the presence of elevated intracranial pressure. The algorithm was found to be 92.05± 2.25% accurate in detecting intracranial hypertension on our dataset.