Closing the Data Loop: An Integrated Open Access Analysis Platform for the MIMIC Database.

Computing in cardiology Pub Date : 2016-09-01 Epub Date: 2017-03-02 DOI:10.23919/CIC.2016.7868698
Mohammad Adibuzzaman, Ken Musselman, Alistair Johnson, Paul Brown, Zachary Pitluk, Ananth Grama
{"title":"Closing the Data Loop: An Integrated Open Access Analysis Platform for the MIMIC Database.","authors":"Mohammad Adibuzzaman,&nbsp;Ken Musselman,&nbsp;Alistair Johnson,&nbsp;Paul Brown,&nbsp;Zachary Pitluk,&nbsp;Ananth Grama","doi":"10.23919/CIC.2016.7868698","DOIUrl":null,"url":null,"abstract":"<p><p>We describe a new model for collaborative access, exploration, and analyses of the Medical Information Mart for Intensive Care - III (MIMIC III) database for translational clinical research. The proposed model addresses the significant disconnect between data collection at the point of care and translational clinical research. It addresses problems of data integration, preprocessing, normalization, analyses (along with associated compute back-end), and visualization. The proposed platform is general, and can be easily adapted to other databases. The pre-packaged analyses toolkit is easily extensible, and allows for multi-language support. The platform can be easily federated, mirrored at other locations, and supports a RESTful API for service composition and scaling.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":" ","pages":"137-140"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.23919/CIC.2016.7868698","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CIC.2016.7868698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/3/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We describe a new model for collaborative access, exploration, and analyses of the Medical Information Mart for Intensive Care - III (MIMIC III) database for translational clinical research. The proposed model addresses the significant disconnect between data collection at the point of care and translational clinical research. It addresses problems of data integration, preprocessing, normalization, analyses (along with associated compute back-end), and visualization. The proposed platform is general, and can be easily adapted to other databases. The pre-packaged analyses toolkit is easily extensible, and allows for multi-language support. The platform can be easily federated, mirrored at other locations, and supports a RESTful API for service composition and scaling.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
闭合数据循环:MIMIC数据库的集成开放访问分析平台。
我们描述了一种新的模式,用于协作访问、探索和分析用于转化临床研究的重症监护医学信息市场- III (MIMIC III)数据库。提出的模型解决了在护理点的数据收集和转化临床研究之间的重大脱节。它解决了数据集成、预处理、规范化、分析(以及相关的计算后端)和可视化等问题。该平台具有通用性,可以很容易地适应其他数据库。预打包的分析工具包易于扩展,并支持多语言支持。该平台可以很容易地在其他位置进行联合和镜像,并支持用于服务组合和扩展的RESTful API。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning for Improved Classification of Drivers in Atrial Fibrillation. Effects of Biventricular Pacing Locations on Anti-Tachycardia Pacing Success in a Patient-Specific Model. Deep Learning System for Left Ventricular Assist Device Candidate Assessment from Electrocardiograms. Capturing the Influence of Conduction Velocity on Epicardial Activation Patterns Using Uncertainty Quantification. Comparison of Machine Learning Detection of Low Left Ventricular Ejection Fraction Using Individual ECG Leads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1