{"title":"Decision trees in epidemiological research.","authors":"Ashwini Venkatasubramaniam, Julian Wolfson, Nathan Mitchell, Timothy Barnes, Meghan JaKa, Simone French","doi":"10.1186/s12982-017-0064-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods.</p><p><strong>Main text: </strong>We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART) technique and the newer Conditional Inference tree (CTree) technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees.</p><p><strong>Conclusions: </strong>Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.</p>","PeriodicalId":39896,"journal":{"name":"Emerging Themes in Epidemiology","volume":"14 ","pages":"11"},"PeriodicalIF":3.6000,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12982-017-0064-4","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Themes in Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12982-017-0064-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 86
Abstract
Background: In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods.
Main text: We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART) technique and the newer Conditional Inference tree (CTree) technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees.
Conclusions: Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.
期刊介绍:
Emerging Themes in Epidemiology is an open access, peer-reviewed, online journal that aims to promote debate and discussion on practical and theoretical aspects of epidemiology. Combining statistical approaches with an understanding of the biology of disease, epidemiologists seek to elucidate the social, environmental and host factors related to adverse health outcomes. Although research findings from epidemiologic studies abound in traditional public health journals, little publication space is devoted to discussion of the practical and theoretical concepts that underpin them. Because of its immediate impact on public health, an openly accessible forum is needed in the field of epidemiology to foster such discussion.