Evolving Centromeres and Kinetochores.

4区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Advances in Genetics Pub Date : 2017-01-01 Epub Date: 2017-09-01 DOI:10.1016/bs.adgen.2017.07.001
Steven Friedman, Michael Freitag
{"title":"Evolving Centromeres and Kinetochores.","authors":"Steven Friedman,&nbsp;Michael Freitag","doi":"10.1016/bs.adgen.2017.07.001","DOIUrl":null,"url":null,"abstract":"<p><p>The genetic material, contained on chromosomes, is often described as the \"blueprint for life.\" During nuclear division, the chromosomes are pulled into each of the two daughter nuclei by the coordination of spindle microtubules, kinetochores, centromeres, and chromatin. These four functional units must link the chromosomes to the microtubules, signal to the cell when the attachment is made so that division can proceed, and withstand the force generated by pulling the chromosomes to either daughter cell. To perform each of these functions, kinetochores are large protein complexes, approximately 5MDa in size, and they contain at least 45 unique proteins. Many of the central components in the kinetochore are well conserved, yielding a common core of proteins forming consistent structures. However, many of the peripheral subcomplexes vary between different taxonomic groups, including changes in primary sequence and gain or loss of whole proteins. It is still unclear how significant these changes are, and answers to this question may provide insights into adaptation to specific lifestyles or progression of disease that involve chromosome instability.</p>","PeriodicalId":50949,"journal":{"name":"Advances in Genetics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.adgen.2017.07.001","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.adgen.2017.07.001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/9/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 8

Abstract

The genetic material, contained on chromosomes, is often described as the "blueprint for life." During nuclear division, the chromosomes are pulled into each of the two daughter nuclei by the coordination of spindle microtubules, kinetochores, centromeres, and chromatin. These four functional units must link the chromosomes to the microtubules, signal to the cell when the attachment is made so that division can proceed, and withstand the force generated by pulling the chromosomes to either daughter cell. To perform each of these functions, kinetochores are large protein complexes, approximately 5MDa in size, and they contain at least 45 unique proteins. Many of the central components in the kinetochore are well conserved, yielding a common core of proteins forming consistent structures. However, many of the peripheral subcomplexes vary between different taxonomic groups, including changes in primary sequence and gain or loss of whole proteins. It is still unclear how significant these changes are, and answers to this question may provide insights into adaptation to specific lifestyles or progression of disease that involve chromosome instability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
进化着丝粒和着丝点。
染色体上的遗传物质通常被描述为“生命的蓝图”。在核分裂过程中,染色体通过纺锤体微管、着丝点、着丝粒和染色质的协调被拉入两个子核。这四种功能单位必须将染色体连接到微管上,在连接完成时向细胞发出信号,这样分裂才能进行,并承受将染色体拉向任何一个子细胞所产生的力。为了完成这些功能,着丝点是大的蛋白质复合物,大小约为5MDa,它们包含至少45种独特的蛋白质。着丝点中的许多中心成分都很保守,产生了形成一致结构的共同核心蛋白质。然而,许多外周亚复合物在不同的分类群之间变化,包括初级序列的变化和整个蛋白质的获得或损失。目前还不清楚这些变化有多重要,这个问题的答案可能会提供对特定生活方式的适应或涉及染色体不稳定的疾病进展的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Genetics
Advances in Genetics 生物-遗传学
CiteScore
5.70
自引率
0.00%
发文量
1
审稿时长
1 months
期刊介绍: Advances in Genetics presents an eclectic mix of articles of use to all human and molecular geneticists. They are written and edited by recognized leaders in the field and make this an essential series of books for anyone in the genetics field.
期刊最新文献
Circadian rhythm and host genetics. Genomic predictors of physical activity and athletic performance. Host genetics and nutrition. Human adaptations to diet: Biological and cultural coevolution. Impact of evolution on lifestyle in microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1