Matchmaker Exchange

Nara L. M. Sobreira, Harindra Arachchi, Orion J. Buske, Jessica X. Chong, Ben Hutton, Julia Foreman, François Schiettecatte, Tudor Groza, Julius O.B. Jacobsen, Melissa A. Haendel, Kym M. Boycott, Ada Hamosh, Heidi L. Rehm, on behalf of the Matchmaker Exchange Consortium
{"title":"Matchmaker Exchange","authors":"Nara L. M. Sobreira,&nbsp;Harindra Arachchi,&nbsp;Orion J. Buske,&nbsp;Jessica X. Chong,&nbsp;Ben Hutton,&nbsp;Julia Foreman,&nbsp;François Schiettecatte,&nbsp;Tudor Groza,&nbsp;Julius O.B. Jacobsen,&nbsp;Melissa A. Haendel,&nbsp;Kym M. Boycott,&nbsp;Ada Hamosh,&nbsp;Heidi L. Rehm,&nbsp;on behalf of the Matchmaker Exchange Consortium","doi":"10.1002/cphg.50","DOIUrl":null,"url":null,"abstract":"<p>In well over half of the individuals with rare disease who undergo clinical or research next-generation sequencing, the responsible gene cannot be determined. Some reasons for this relatively low yield include unappreciated phenotypic heterogeneity; locus heterogeneity; somatic and germline mosaicism; variants of uncertain functional significance; technically inaccessible areas of the genome; incorrect mode of inheritance investigated; and inadequate communication between clinicians and basic scientists with knowledge of particular genes, proteins, or biological systems. To facilitate such communication and improve the search for patients or model organisms with similar phenotypes and variants in specific candidate genes, we have developed the Matchmaker Exchange (MME). MME was created to establish a federated network connecting databases of genomic and phenotypic data using a common application programming interface (API). To date, seven databases can exchange data using the API (GeneMatcher, PhenomeCentral, DECIPHER, MyGene2, <i>matchbox</i>, Australian Genomics Health Alliance Patient Archive, and Monarch Initiative; the latter included for model organism matching). This article guides usage of the MME for rare disease gene discovery. © 2017 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":40007,"journal":{"name":"Current Protocols in Human Genetics","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cphg.50","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Human Genetics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cphg.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

In well over half of the individuals with rare disease who undergo clinical or research next-generation sequencing, the responsible gene cannot be determined. Some reasons for this relatively low yield include unappreciated phenotypic heterogeneity; locus heterogeneity; somatic and germline mosaicism; variants of uncertain functional significance; technically inaccessible areas of the genome; incorrect mode of inheritance investigated; and inadequate communication between clinicians and basic scientists with knowledge of particular genes, proteins, or biological systems. To facilitate such communication and improve the search for patients or model organisms with similar phenotypes and variants in specific candidate genes, we have developed the Matchmaker Exchange (MME). MME was created to establish a federated network connecting databases of genomic and phenotypic data using a common application programming interface (API). To date, seven databases can exchange data using the API (GeneMatcher, PhenomeCentral, DECIPHER, MyGene2, matchbox, Australian Genomics Health Alliance Patient Archive, and Monarch Initiative; the latter included for model organism matching). This article guides usage of the MME for rare disease gene discovery. © 2017 by John Wiley & Sons, Inc.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
媒人交换
在接受临床或研究下一代测序的罕见疾病患者中,超过一半的人无法确定致病基因。产量相对较低的一些原因包括未被重视的表型异质性;位点异质性;体细胞和种系嵌合体;功能意义不确定的变体;基因组中技术上难以接近的区域;调查不正确的继承方式;临床医生和具有特定基因、蛋白质或生物系统知识的基础科学家之间的沟通不足。为了促进这种交流,并改善对具有相似表型和特定候选基因变异的患者或模式生物的搜索,我们开发了媒人交换(MME)。创建MME是为了建立一个使用公共应用程序编程接口(API)连接基因组和表型数据数据库的联邦网络。迄今为止,有7个数据库可以使用API交换数据(GeneMatcher、PhenomeCentral、DECIPHER、MyGene2、火柴盒、澳大利亚基因组健康联盟患者档案和Monarch Initiative;后者包括模式生物匹配)。本文指导MME在罕见病基因发现中的应用。©2017 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Protocols in Human Genetics
Current Protocols in Human Genetics Biochemistry, Genetics and Molecular Biology-Genetics
自引率
0.00%
发文量
0
期刊介绍: Current Protocols in Human Genetics is the resource for designing and running successful research projects in all branches of human genetics.
期刊最新文献
Issue Information Resolving Breakpoints of Chromosomal Rearrangements at the Nucleotide Level Using Sanger Sequencing Informed Consent for Genetic and Genomic Research A Guide to Using ClinTAD for Interpretation of DNA Copy Number Variants in the Context of Topologically Associated Domains The AD Knowledge Portal: A Repository for Multi-Omic Data on Alzheimer's Disease and Aging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1