John Oluwasogo Ayorinde, Michael Ayodele Odeniyi, Arvind K Bansal
{"title":"Evaluation of two novel plant gums for bioadhesive microsphere and sustained-release formulations of metformin hydrochloride.","authors":"John Oluwasogo Ayorinde, Michael Ayodele Odeniyi, Arvind K Bansal","doi":"10.17219/pim/74776","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The biological half life of metformin requires multiple doses which are associated with poor patient compliance. This justifies the need for a dosage form with reduced dosing frequency.</p><p><strong>Objectives: </strong>Gums from Enterolobium cyclocarpum and Cedrela odorata trees were evaluated in formulating bioadhesive microspheres containing metformin hydrochloride, for sustained drug release. Hydroxylpropylmethyl cellulose (HPMC) was the standard.</p><p><strong>Material and methods: </strong>Microspheres were produced from formulations of API and either cedrela gum (FC), enterolobium gum (FE) or HPMC (FH), using a W/O solvent extraction technique. The microspheres were characterized using a particle size analyzer, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffractometer (PXRD), drug entrapment, in vitro release and mucoadhesion studies. The data was analyzed using ANOVA and t-test at p = 0.05.</p><p><strong>Results: </strong>FT-IR spectroscopy indicated no alteration in the functional groups of metformin. A yield of 92-98% microspheres was obtained from all the formulations which had a particle size range of 72-84 μm. SEM revealed cylindrical to near-spherical particles with rough surfaces. The drug release profile showed a burst over the first 30 min followed by a steady release for about 5 h and a slow release for 5 days. Formulations containing the gums sustained the release of API for almost the same time as HPMC formulations; the ranking order was FE > FH > FC (p > 0.05). All the formulations exhibited good concentration-dependent mucoadhesive properties.</p><p><strong>Conclusions: </strong>The gums were suitable for formulation of mucoadhesive microspheres for sustained release of metformin. The formulations showed good release properties in an alkaline pH.</p>","PeriodicalId":20355,"journal":{"name":"Polimery w medycynie","volume":"47 1","pages":"13-23"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polimery w medycynie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17219/pim/74776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1
Abstract
Background: The biological half life of metformin requires multiple doses which are associated with poor patient compliance. This justifies the need for a dosage form with reduced dosing frequency.
Objectives: Gums from Enterolobium cyclocarpum and Cedrela odorata trees were evaluated in formulating bioadhesive microspheres containing metformin hydrochloride, for sustained drug release. Hydroxylpropylmethyl cellulose (HPMC) was the standard.
Material and methods: Microspheres were produced from formulations of API and either cedrela gum (FC), enterolobium gum (FE) or HPMC (FH), using a W/O solvent extraction technique. The microspheres were characterized using a particle size analyzer, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffractometer (PXRD), drug entrapment, in vitro release and mucoadhesion studies. The data was analyzed using ANOVA and t-test at p = 0.05.
Results: FT-IR spectroscopy indicated no alteration in the functional groups of metformin. A yield of 92-98% microspheres was obtained from all the formulations which had a particle size range of 72-84 μm. SEM revealed cylindrical to near-spherical particles with rough surfaces. The drug release profile showed a burst over the first 30 min followed by a steady release for about 5 h and a slow release for 5 days. Formulations containing the gums sustained the release of API for almost the same time as HPMC formulations; the ranking order was FE > FH > FC (p > 0.05). All the formulations exhibited good concentration-dependent mucoadhesive properties.
Conclusions: The gums were suitable for formulation of mucoadhesive microspheres for sustained release of metformin. The formulations showed good release properties in an alkaline pH.