Modifying SAMseq to account for asymmetry in the distribution of effect sizes when identifying differentially expressed genes.

Pub Date : 2017-11-27 DOI:10.1515/sagmb-2016-0037
Ekua Kotoka, Megan Orr
{"title":"Modifying SAMseq to account for asymmetry in the distribution of effect sizes when identifying differentially expressed genes.","authors":"Ekua Kotoka,&nbsp;Megan Orr","doi":"10.1515/sagmb-2016-0037","DOIUrl":null,"url":null,"abstract":"<p><p>RNA-Seq is a developing technology for generating gene expression data by directly sequencing mRNA molecules in a sample. RNA-Seq data consist of counts of reads recorded to a particular gene that are often used to identify differentially expressed (DE) genes. A common statistical method used to analyze RNA-Seq data is Significance Analysis of Microarray with emphasis on RNA-Seq data (SAMseq). SAMseq is a nonparametric method that uses a resampling technique to account for differences in sequencing depths when identifying DE genes. We propose a modification of this method that takes into account asymmetry in the distribution of the effect sizes by taking into account the sign of the test statistics. Through simulation studies, we showthat the proposed method, comparedwith the traditional SAMseqmethod and other existing methods provides better power for identifying truly DE genes or more sufficiently controls FDR in most settings where asymmetry is present. We illustrate the use of the proposed method by analyzing an RNA-Seq data set containing C57BL/6J (B6) and DBA/2J (D2) mouse strains samples.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2016-0037","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2016-0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

RNA-Seq is a developing technology for generating gene expression data by directly sequencing mRNA molecules in a sample. RNA-Seq data consist of counts of reads recorded to a particular gene that are often used to identify differentially expressed (DE) genes. A common statistical method used to analyze RNA-Seq data is Significance Analysis of Microarray with emphasis on RNA-Seq data (SAMseq). SAMseq is a nonparametric method that uses a resampling technique to account for differences in sequencing depths when identifying DE genes. We propose a modification of this method that takes into account asymmetry in the distribution of the effect sizes by taking into account the sign of the test statistics. Through simulation studies, we showthat the proposed method, comparedwith the traditional SAMseqmethod and other existing methods provides better power for identifying truly DE genes or more sufficiently controls FDR in most settings where asymmetry is present. We illustrate the use of the proposed method by analyzing an RNA-Seq data set containing C57BL/6J (B6) and DBA/2J (D2) mouse strains samples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
在鉴定差异表达基因时,修改SAMseq以解释效应大小分布的不对称性。
RNA-Seq是一种通过直接测序样品中的mRNA分子来生成基因表达数据的新兴技术。RNA-Seq数据包括记录到特定基因的读取计数,通常用于识别差异表达(DE)基因。用于分析RNA-Seq数据的常用统计方法是强调RNA-Seq数据的微阵列显著性分析(SAMseq)。SAMseq是一种非参数方法,在鉴定DE基因时使用重采样技术来解释测序深度的差异。我们建议对这种方法进行修改,通过考虑检验统计量的符号来考虑效应大小分布的不对称性。通过仿真研究,我们表明,与传统的SAMseqmethod和其他现有方法相比,所提出的方法在大多数不对称存在的情况下,能够更好地识别真正的DE基因或更充分地控制FDR。我们通过分析包含C57BL/6J (B6)和DBA/2J (D2)小鼠品系样本的RNA-Seq数据集来说明该方法的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1