Structural Connectivity Guided Sparse Effective Connectivity for MCI Identification.

Yang Li, Jingyu Liu, Meilin Luo, Ke Li, Pew-Thian Yap, Minjeong Kim, Chong-Yaw Wee, Dinggang Shen
{"title":"Structural Connectivity Guided Sparse Effective Connectivity for MCI Identification.","authors":"Yang Li,&nbsp;Jingyu Liu,&nbsp;Meilin Luo,&nbsp;Ke Li,&nbsp;Pew-Thian Yap,&nbsp;Minjeong Kim,&nbsp;Chong-Yaw Wee,&nbsp;Dinggang Shen","doi":"10.1007/978-3-319-67389-9_35","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in network modelling techniques have enabled the study of neurological disorders at a whole-brain level based on functional connectivity inferred from resting-state magnetic resonance imaging (rs-fMRI) scan possible. However, constructing a directed effective connectivity, which provides a more comprehensive characterization of functional interactions among the brain regions, is still a challenging task particularly when the ultimate goal is to identify disease associated brain functional interaction anomalies. In this paper, we propose a novel method for inferring effective connectivity from multimodal neuroimaging data for brain disease classification. Specifically, we apply a newly devised weighted sparse regression model on rs-fMRI data to determine the network structure of effective connectivity with the guidance from diffusion tensor imaging (DTI) data. We further employ a regression algorithm to estimate the effective connectivity strengths based on the previously identified network structure. We finally utilize a bagging classifier to evaluate the performance of the proposed sparse effective connectivity network through identifying mild cognitive impairment from healthy aging.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"10541 ","pages":"299-306"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-67389-9_35","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-67389-9_35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/9/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recent advances in network modelling techniques have enabled the study of neurological disorders at a whole-brain level based on functional connectivity inferred from resting-state magnetic resonance imaging (rs-fMRI) scan possible. However, constructing a directed effective connectivity, which provides a more comprehensive characterization of functional interactions among the brain regions, is still a challenging task particularly when the ultimate goal is to identify disease associated brain functional interaction anomalies. In this paper, we propose a novel method for inferring effective connectivity from multimodal neuroimaging data for brain disease classification. Specifically, we apply a newly devised weighted sparse regression model on rs-fMRI data to determine the network structure of effective connectivity with the guidance from diffusion tensor imaging (DTI) data. We further employ a regression algorithm to estimate the effective connectivity strengths based on the previously identified network structure. We finally utilize a bagging classifier to evaluate the performance of the proposed sparse effective connectivity network through identifying mild cognitive impairment from healthy aging.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于结构连通性的稀疏有效连通性MCI识别。
网络建模技术的最新进展使得基于静息状态磁共振成像(rs-fMRI)扫描推断的功能连通性在全脑水平上研究神经系统疾病成为可能。然而,构建一个定向有效的连接,提供一个更全面的表征脑区域之间的功能相互作用,仍然是一个具有挑战性的任务,特别是当最终目标是识别疾病相关的脑功能相互作用异常。在本文中,我们提出了一种从多模态神经成像数据推断有效连接的新方法,用于脑疾病分类。具体来说,我们在扩散张量成像(DTI)数据的指导下,对rs-fMRI数据应用了一种新设计的加权稀疏回归模型来确定有效连通性的网络结构。我们进一步采用回归算法来估计基于先前识别的网络结构的有效连通性强度。最后,我们利用bagging分类器来评估所提出的稀疏有效连接网络的性能,通过识别健康老龄化的轻度认知损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probabilistic 3D Correspondence Prediction from Sparse Unsegmented Images. Class-Balanced Deep Learning with Adaptive Vector Scaling Loss for Dementia Stage Detection. MoViT: Memorizing Vision Transformers for Medical Image Analysis. Robust Unsupervised Super-Resolution of Infant MRI via Dual-Modal Deep Image Prior. IA-GCN: Interpretable Attention based Graph Convolutional Network for Disease Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1