Penghui Hu, Hongjie Chen, Eileen M McGowan, Nina Ren, Meng Xu, Yiguang Lin
{"title":"Assessment of FGFR1 Over-Expression and Over-Activity in Lung Cancer Cells: A Toolkit for Anti-FGFR1 Drug Screening.","authors":"Penghui Hu, Hongjie Chen, Eileen M McGowan, Nina Ren, Meng Xu, Yiguang Lin","doi":"10.1089/hgtb.2017.104","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer, caused mainly by smoking, is one of the most prevalent diseases in China, resulting in high mortality rates. The increasing incidence of chronic disease due to lung cancer places a huge burden on the welfare and cost to the Chinese society. Amplification of the fibroblast growth factor receptor 1 (FGFR1) is associated with high incidence and mortality in lung cancer patients. FGFR1 signaling is implicated in oncogenic traits such as proliferation, cell survival, angiogenesis, and migration. Targeting FGFR1 and its ligand basic FGF (bFGF) is a key step forward in developing new therapies for this crippling disease. Lung adenocarcinoma is the most common subtype of non-small-cell lung cancer. In this study, A549, a lung adenocarcinoma cell line widely used in vitro as a model for drug metabolism and as a transfection host, was used to study FGFR1. A stable lentiviral FGFR1 over-expression system in lung cancer cells is described for the study of anti-lung cancer drug candidates targeting FGFR1. Ligand binding to FGFR1 activates the PI3K/Akt/mTOR signaling pathway and increases adhesion, invasion, and migration in this model. Using a unique FGF monoclonal antibody developed in the laboratory, the overactive PI3K pathway was effectively blocked, abrogating the negative metastatic signaling pathways in lung cancer cells. Importantly, this model provides an effective and simple screening kit for anti-FGF1 drug compounds for lung cancer treatment and a tool for understanding the molecular mechanisms of the FGFR1 signaling pathway in lung cancer. Furthermore, this toolkit based on a FGFR1 lentiviral construct model is transferrable to study FGFR1 signaling in any type of cancer cell.</p>","PeriodicalId":13126,"journal":{"name":"Human Gene Therapy Methods","volume":"29 1","pages":"30-43"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/hgtb.2017.104","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Gene Therapy Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/hgtb.2017.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 3
Abstract
Lung cancer, caused mainly by smoking, is one of the most prevalent diseases in China, resulting in high mortality rates. The increasing incidence of chronic disease due to lung cancer places a huge burden on the welfare and cost to the Chinese society. Amplification of the fibroblast growth factor receptor 1 (FGFR1) is associated with high incidence and mortality in lung cancer patients. FGFR1 signaling is implicated in oncogenic traits such as proliferation, cell survival, angiogenesis, and migration. Targeting FGFR1 and its ligand basic FGF (bFGF) is a key step forward in developing new therapies for this crippling disease. Lung adenocarcinoma is the most common subtype of non-small-cell lung cancer. In this study, A549, a lung adenocarcinoma cell line widely used in vitro as a model for drug metabolism and as a transfection host, was used to study FGFR1. A stable lentiviral FGFR1 over-expression system in lung cancer cells is described for the study of anti-lung cancer drug candidates targeting FGFR1. Ligand binding to FGFR1 activates the PI3K/Akt/mTOR signaling pathway and increases adhesion, invasion, and migration in this model. Using a unique FGF monoclonal antibody developed in the laboratory, the overactive PI3K pathway was effectively blocked, abrogating the negative metastatic signaling pathways in lung cancer cells. Importantly, this model provides an effective and simple screening kit for anti-FGF1 drug compounds for lung cancer treatment and a tool for understanding the molecular mechanisms of the FGFR1 signaling pathway in lung cancer. Furthermore, this toolkit based on a FGFR1 lentiviral construct model is transferrable to study FGFR1 signaling in any type of cancer cell.
期刊介绍:
Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
The Journal is divided into three parts. Human Gene Therapy, the flagship, is published 12 times per year. HGT Methods, a bimonthly journal, focuses on the applications of gene therapy to product testing and development. HGT Clinical Development, a quarterly journal, serves as a venue for publishing data relevant to the regulatory review and commercial development of cell and gene therapy products.