Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data.

IF 0.8 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Operational Meteorology Pub Date : 2016-01-01 Epub Date: 2016-06-28 DOI:10.15191/nwajom.2016.0407
Elise V Schultz, Christopher J Schultz, Lawrence D Carey, Daniel J Cecil, Monte Bateman
{"title":"Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data.","authors":"Elise V Schultz,&nbsp;Christopher J Schultz,&nbsp;Lawrence D Carey,&nbsp;Daniel J Cecil,&nbsp;Monte Bateman","doi":"10.15191/nwajom.2016.0407","DOIUrl":null,"url":null,"abstract":"<p><p>This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.</p>","PeriodicalId":44039,"journal":{"name":"Journal of Operational Meteorology","volume":"4 7","pages":"92-107"},"PeriodicalIF":0.8000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749929/pdf/nihms921286.pdf","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operational Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15191/nwajom.2016.0407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/6/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 18

Abstract

This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GOES-R地球同步闪电成像仪(GLM)代理数据的自动风暴跟踪和闪电跳跃算法。
本研究开发了一个完全自动化的闪电跳跃系统,该系统包含客观风暴跟踪、地球同步闪电Mapper代理数据和闪电跳跃算法(LJA),这是LJA概念从研究到基于操作的算法转变的重要要素。风暴集群跟踪是基于雷达参数(垂直集成液体,VIL)和闪电信息(闪速密度)组合而成的产品。结果表明,轨迹特征或风暴集群的空间尺度对闪电跳变系统性能影响较大,空间尺度越大,系统性能动态范围越小。这一框架还将作为改进LJA本身的一种手段,以增强其业务适用性。系统内的参数被隔离,并通过调整参数灵敏度来评估系统的性能。利用检测概率(POD)和虚警率(FAR)统计来评估系统的性能。在测试的算法参数中,西格玛电平(闪电跳跃强度度量)和闪光率阈值对系统性能影响最大。最后,研究了验证方法。研究发现,验证方法的微小变化会极大地影响闪电跳变系统的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Operational Meteorology
Journal of Operational Meteorology METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
2.40
自引率
0.00%
发文量
4
期刊最新文献
A Tale of Two Hazards: Studying Broadcast Meteorologist Communication of Simultaneous Tornado and Flash Flood (TORFF) Events A Change in the Weather: Understanding Public Usage of Weather Apps Convection Initiation Forecasting Using Synthetic Satellite Imagery from the Warn-on-Forecast System Interpreting Warn-on-Forecast System Guidance, Part I: Review of Probabilistic Guidance Concepts, Product Design, and Best Practices End-User Threat Perception: Building Confidence to Make Decisions Ahead of Severe Weather
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1