[Genetic polymorphism, haplotype distribution, and phylogeny of Daphnia (Cladocera: Anomopoda) species from the water bodies of russia as inferred from the 16S mtDNA gene sequencing].
{"title":"[Genetic polymorphism, haplotype distribution, and phylogeny of Daphnia (Cladocera: Anomopoda) species from the water bodies of russia as inferred from the 16S mtDNA gene sequencing].","authors":"E I Zuykova, N A Bochkarev, N G Sheveleva","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The data on the genetic polymorphism of the most widespread Daphnia species occupying different water bodies of Russia are presented. The phylogenetic relationships between the examined species were established, and the haplotype networks were constructed. A fragment of the 16S mitochondrial DNA gene was used as a genetic marker. The results of molecular phylogenetic analysis generally coincided with modern concepts in the systematics of the genus Daphnia. The representatives of the divergent mitochondrial lineages within the D. longispina, D. pulex, and D. magna complex remain poorly investigated morphologically. For D. dentifera, a new habitat on the territory of Russia, namely, the water bodies of the Lake Baikal basin, was identified. A conclusion was made that the 16S mtDNA gene could be successfully used in phylogeographic analysis of the genus Daphnia.</p>","PeriodicalId":12707,"journal":{"name":"Genetika","volume":"52 6","pages":"672-84"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetika","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The data on the genetic polymorphism of the most widespread Daphnia species occupying different water bodies of Russia are presented. The phylogenetic relationships between the examined species were established, and the haplotype networks were constructed. A fragment of the 16S mitochondrial DNA gene was used as a genetic marker. The results of molecular phylogenetic analysis generally coincided with modern concepts in the systematics of the genus Daphnia. The representatives of the divergent mitochondrial lineages within the D. longispina, D. pulex, and D. magna complex remain poorly investigated morphologically. For D. dentifera, a new habitat on the territory of Russia, namely, the water bodies of the Lake Baikal basin, was identified. A conclusion was made that the 16S mtDNA gene could be successfully used in phylogeographic analysis of the genus Daphnia.