Multiply robust imputation procedures for zero-inflated distributions in surveys.

IF 0.7 Q3 STATISTICS & PROBABILITY Metron-International Journal of Statistics Pub Date : 2017-12-01 Epub Date: 2017-10-11 DOI:10.1007/s40300-017-0128-9
Sixia Chen, David Haziza
{"title":"Multiply robust imputation procedures for zero-inflated distributions in surveys.","authors":"Sixia Chen,&nbsp;David Haziza","doi":"10.1007/s40300-017-0128-9","DOIUrl":null,"url":null,"abstract":"<p><p>Item nonresponse in surveys is usually treated by some form of single imputation. In practice, the survey variable subject to missing values may exhibit a large number of zero-valued observations. In this paper, we propose multiply robust imputation procedures for treating this type of variable. Our procedures may be based on multiple imputation models and/or multiple nonresponse models. An imputation procedure is said to be multiply robust if the resulting estimator is consistent when all models but one are misspecified. The variance of the imputed estimators is estimated through a generalized jackknife variance estimation procedure. Results from a simulation study suggest that the proposed procedures perform well in terms of bias, efficiency and coverage rate.</p>","PeriodicalId":51716,"journal":{"name":"Metron-International Journal of Statistics","volume":"75 3","pages":"333-343"},"PeriodicalIF":0.7000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40300-017-0128-9","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metron-International Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40300-017-0128-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6

Abstract

Item nonresponse in surveys is usually treated by some form of single imputation. In practice, the survey variable subject to missing values may exhibit a large number of zero-valued observations. In this paper, we propose multiply robust imputation procedures for treating this type of variable. Our procedures may be based on multiple imputation models and/or multiple nonresponse models. An imputation procedure is said to be multiply robust if the resulting estimator is consistent when all models but one are misspecified. The variance of the imputed estimators is estimated through a generalized jackknife variance estimation procedure. Results from a simulation study suggest that the proposed procedures perform well in terms of bias, efficiency and coverage rate.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在调查中为零膨胀分布增加稳健的估算程序。
调查中的项目无反应通常用某种形式的单一归算来处理。在实践中,受缺失值影响的调查变量可能表现出大量的零值观测值。在本文中,我们提出了处理这类变量的多重鲁棒输入程序。我们的程序可能基于多个输入模型和/或多个无响应模型。如果在除一个模型外的所有模型都被错误指定的情况下,所得到的估计量是一致的,那么我们就说一个估计过程是多重鲁棒的。利用广义折刀方差估计方法估计了估计量的方差。模拟研究结果表明,所提出的程序在偏差、效率和覆盖率方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metron-International Journal of Statistics
Metron-International Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.60
自引率
0.00%
发文量
11
期刊介绍: METRON welcomes original articles on statistical methodology, statistical applications, or discussions of results achieved by statistical methods in different branches of science.
期刊最新文献
Imposing unsupervised constraints to the Benefit-of-the-Doubt (BoD) model Generalized regression estimators with concave penalties and a comparison to lasso type estimators Dynamic modelling of price expectations and judgments How the sampling variances affect the linear predictor of the Fay-Herriot model Evaluating the spatial heterogeneity of innovation drivers: a comparison between GWR and GWPR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1