{"title":"Non-covalent Metallo-Drugs: Using Shape to Target DNA and RNA Junctions and Other Nucleic Acid Structures.","authors":"Lucia Cardo, Michael J Hannon","doi":"10.1515/9783110470734-017","DOIUrl":null,"url":null,"abstract":"<p><p>The most effective class of anticancer drugs in clinical use are the platins which act by binding to duplex B-DNA. Yet duplex DNA is not DNA in its active form, and many other structures are formed in cells; for example, Y-shaped fork structures are involved in DNA replication and transcription and 4-way junctions with DNA repair. In this chapter we explore how large, cationic metallo-supramolecular structures can be used to bind to these less common, yet active, nucleic acid structures.</p>","PeriodicalId":18698,"journal":{"name":"Metal ions in life sciences","volume":"18 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/9783110470734-017","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal ions in life sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110470734-017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The most effective class of anticancer drugs in clinical use are the platins which act by binding to duplex B-DNA. Yet duplex DNA is not DNA in its active form, and many other structures are formed in cells; for example, Y-shaped fork structures are involved in DNA replication and transcription and 4-way junctions with DNA repair. In this chapter we explore how large, cationic metallo-supramolecular structures can be used to bind to these less common, yet active, nucleic acid structures.