{"title":"Analysis of Aminoglycoside Modifying Enzyme Genes Responsible for High-Level Aminoglycoside Resistance among Enterococcal Isolates.","authors":"Vishal Shete, Naveen Grover, Mahadevan Kumar","doi":"10.1155/2017/3256952","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymatic modification results in high-level resistance to aminoglycoside (HLAR), which eliminates the synergistic bactericidal effect of combined exposure to a cell wall-active agent and an aminoglycoside. So aim of the study was to determine prevalence of HLAR enterococcal isolate and to study distribution of aminoglycoside modifying enzyme genes in them. A total of 100 nonrepeat isolates of enterococci from various clinical samples were analyzed. As per Clinical and Laboratory Standards Institute guidelines enterococci were screened for HLAR by Kirby-Bauer disc diffusion method. Minimum inhibitory concentration of all isolates for gentamicin and streptomycin was determined by E-test. Multiplex polymerase chain reaction (PCR) was carried out for HLAR enterococcal isolates to identify aminoglycoside modifying enzymes genes responsible for resistance. 60% isolates were found to be high-level gentamicin resistant (HLGR) whereas 45% isolates were found to be high-level streptomycin resistant (HLSR). By multiplex PCR 80% HLGR isolates carried bifunctional aminoglycoside modifying enzyme gene <i>aac(6</i>'<i>)-Ie-aph(2</i>''<i>)-Ia</i> whereas 18 out of 45 high-level streptomycin resistant, that is, 40%, isolates carried <i>aph(3</i>'<i>)-IIIa.</i> However, <i>aph(2</i>''<i>)-Ib, aph(2</i>''<i>)-Ic, aph(2</i>''<i>)-Id,</i> and <i>ant(4</i>'<i>)-Ia</i> genes which encode other aminoglycosides modifying enzymes were not detected. Bifunctional aminoglycoside modifying enzyme gene <i>aac(6</i>'<i>)-Ie-aph(2</i>''<i>)-Ia</i> is the predominant gene responsible for HLAR.</p>","PeriodicalId":16788,"journal":{"name":"Journal of Pathogens","volume":"2017 ","pages":"3256952"},"PeriodicalIF":1.1000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/3256952","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathogens","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/3256952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 24
Abstract
Enzymatic modification results in high-level resistance to aminoglycoside (HLAR), which eliminates the synergistic bactericidal effect of combined exposure to a cell wall-active agent and an aminoglycoside. So aim of the study was to determine prevalence of HLAR enterococcal isolate and to study distribution of aminoglycoside modifying enzyme genes in them. A total of 100 nonrepeat isolates of enterococci from various clinical samples were analyzed. As per Clinical and Laboratory Standards Institute guidelines enterococci were screened for HLAR by Kirby-Bauer disc diffusion method. Minimum inhibitory concentration of all isolates for gentamicin and streptomycin was determined by E-test. Multiplex polymerase chain reaction (PCR) was carried out for HLAR enterococcal isolates to identify aminoglycoside modifying enzymes genes responsible for resistance. 60% isolates were found to be high-level gentamicin resistant (HLGR) whereas 45% isolates were found to be high-level streptomycin resistant (HLSR). By multiplex PCR 80% HLGR isolates carried bifunctional aminoglycoside modifying enzyme gene aac(6')-Ie-aph(2'')-Ia whereas 18 out of 45 high-level streptomycin resistant, that is, 40%, isolates carried aph(3')-IIIa. However, aph(2'')-Ib, aph(2'')-Ic, aph(2'')-Id, and ant(4')-Ia genes which encode other aminoglycosides modifying enzymes were not detected. Bifunctional aminoglycoside modifying enzyme gene aac(6')-Ie-aph(2'')-Ia is the predominant gene responsible for HLAR.