Simulated ablation for detection of cells impacting paracrine signalling in histology analysis.

IF 0.8 4区 数学 Q4 BIOLOGY Mathematical Medicine and Biology-A Journal of the Ima Pub Date : 2019-03-14 DOI:10.1093/imammb/dqx022
Jake P Taylor-King, Etienne Baratchart, Andrew Dhawan, Elizabeth A Coker, Inga Hansine Rye, Hege Russnes, S Jon Chapman, David Basanta, Andriy Marusyk
{"title":"Simulated ablation for detection of cells impacting paracrine signalling in histology analysis.","authors":"Jake P Taylor-King,&nbsp;Etienne Baratchart,&nbsp;Andrew Dhawan,&nbsp;Elizabeth A Coker,&nbsp;Inga Hansine Rye,&nbsp;Hege Russnes,&nbsp;S Jon Chapman,&nbsp;David Basanta,&nbsp;Andriy Marusyk","doi":"10.1093/imammb/dqx022","DOIUrl":null,"url":null,"abstract":"<p><p>Intra-tumour phenotypic heterogeneity limits accuracy of clinical diagnostics and hampers the efficiency of anti-cancer therapies. Dealing with this cellular heterogeneity requires adequate understanding of its sources, which is extremely difficult, as phenotypes of tumour cells integrate hardwired (epi)mutational differences with the dynamic responses to microenvironmental cues. The later comes in form of both direct physical interactions, as well as inputs from gradients of secreted signalling molecules. Furthermore, tumour cells can not only receive microenvironmental cues, but also produce them. Despite high biological and clinical importance of understanding spatial aspects of paracrine signaling, adequate research tools are largely lacking. Here, a partial differential equation (PDE)-based mathematical model is developed that mimics the process of cell ablation. This model suggests how each cell might contribute to the microenvironment by either absorbing or secreting diffusible factors, and quantifies the extent to which observed intensities can be explained via diffusion-mediated signalling. The model allows for the separation of phenotypic responses to signalling gradients within tumour microenvironments from the combined influence of responses mediated by direct physical contact and hardwired (epi)genetic differences. The method is applied to a multi-channel immunofluorescence in situ hybridisation (iFISH)-stained breast cancer histological specimen, and correlations are investigated between: HER2 gene amplification, HER2 protein expression and cell interaction with the diffusible microenvironment. This approach allows partial deconvolution of the complex inputs that shape phenotypic heterogeneity of tumour cells and identifies cells that significantly impact gradients of signalling molecules.</p>","PeriodicalId":49863,"journal":{"name":"Mathematical Medicine and Biology-A Journal of the Ima","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imammb/dqx022","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Medicine and Biology-A Journal of the Ima","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/imammb/dqx022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Intra-tumour phenotypic heterogeneity limits accuracy of clinical diagnostics and hampers the efficiency of anti-cancer therapies. Dealing with this cellular heterogeneity requires adequate understanding of its sources, which is extremely difficult, as phenotypes of tumour cells integrate hardwired (epi)mutational differences with the dynamic responses to microenvironmental cues. The later comes in form of both direct physical interactions, as well as inputs from gradients of secreted signalling molecules. Furthermore, tumour cells can not only receive microenvironmental cues, but also produce them. Despite high biological and clinical importance of understanding spatial aspects of paracrine signaling, adequate research tools are largely lacking. Here, a partial differential equation (PDE)-based mathematical model is developed that mimics the process of cell ablation. This model suggests how each cell might contribute to the microenvironment by either absorbing or secreting diffusible factors, and quantifies the extent to which observed intensities can be explained via diffusion-mediated signalling. The model allows for the separation of phenotypic responses to signalling gradients within tumour microenvironments from the combined influence of responses mediated by direct physical contact and hardwired (epi)genetic differences. The method is applied to a multi-channel immunofluorescence in situ hybridisation (iFISH)-stained breast cancer histological specimen, and correlations are investigated between: HER2 gene amplification, HER2 protein expression and cell interaction with the diffusible microenvironment. This approach allows partial deconvolution of the complex inputs that shape phenotypic heterogeneity of tumour cells and identifies cells that significantly impact gradients of signalling molecules.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟消融检测细胞影响旁分泌信号在组织学分析。
肿瘤内表型异质性限制了临床诊断的准确性,阻碍了抗癌治疗的效率。处理这种细胞异质性需要充分了解其来源,这是非常困难的,因为肿瘤细胞的表型将硬连线(epi)突变差异与对微环境线索的动态反应相结合。后者的形式包括直接的物理相互作用,以及分泌信号分子梯度的输入。此外,肿瘤细胞不仅能接收微环境信号,还能产生微环境信号。尽管了解旁分泌信号的空间方面具有很高的生物学和临床重要性,但在很大程度上缺乏足够的研究工具。本文建立了一个基于偏微分方程(PDE)的模拟细胞消融过程的数学模型。该模型显示了每个细胞如何通过吸收或分泌扩散因子对微环境做出贡献,并量化了通过扩散介导的信号传导解释所观察到的强度的程度。该模型允许将肿瘤微环境中信号梯度的表型反应与直接物理接触和遗传差异介导的反应的综合影响分离开来。该方法应用于多通道免疫荧光原位杂交(iFISH)染色的乳腺癌组织学标本,研究了HER2基因扩增、HER2蛋白表达与细胞与扩散微环境相互作用之间的相关性。这种方法允许对形成肿瘤细胞表型异质性的复杂输入进行部分反卷积,并识别显著影响信号分子梯度的细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: Formerly the IMA Journal of Mathematics Applied in Medicine and Biology. Mathematical Medicine and Biology publishes original articles with a significant mathematical content addressing topics in medicine and biology. Papers exploiting modern developments in applied mathematics are particularly welcome. The biomedical relevance of mathematical models should be demonstrated clearly and validation by comparison against experiment is strongly encouraged. The journal welcomes contributions relevant to any area of the life sciences including: -biomechanics- biophysics- cell biology- developmental biology- ecology and the environment- epidemiology- immunology- infectious diseases- neuroscience- pharmacology- physiology- population biology
期刊最新文献
A generalized order mixture model for tracing connectivity of white matter fascicles complexity in brain from diffusion MRI. A dynamical model of TGF-β activation in asthmatic airways. Quantifying assays: inhibition of signalling pathways of cancer. Discrete and continuum models for the coevolutionary dynamics between CD8+ cytotoxic T lymphocytes and tumour cells. COVID-19 immunotherapy: a mathematical model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1