Yasaman Mirdamadi, Ursula Bommhardt, Alexander Goihl, Karina Guttek, Christos C Zouboulis, Sven Quist, Harald Gollnick
{"title":"Insulin and Insulin-like growth factor-1 can activate the phosphoinositide-3-kinase /Akt/FoxO1 pathway in T cells <i>in vitro</i>.","authors":"Yasaman Mirdamadi, Ursula Bommhardt, Alexander Goihl, Karina Guttek, Christos C Zouboulis, Sven Quist, Harald Gollnick","doi":"10.1080/19381980.2017.1356518","DOIUrl":null,"url":null,"abstract":"<p><p>Hyper-glycemic food increases insulin-like growth factor 1 (IGF-1) and insulin signaling and regulates endocrine responses and thereby may modulate the course of acne. Inflammation and adaptive immune responses have a pivotal role in all stages of acne. Recent hypothesis suggests that hyperglycemic food reduces nuclear forkhead box-O1 (FoxO1) transcription factor and may eventually induces acne. The aim of our study was to investigate the role of IGF-1 and insulin on the phosphoinositide-3-kinase (PI3K)/Akt/FoxO1 pathway in human primary T cells and on the molecular functions of T cells <i>in vitro</i>. T cells were stimulated with 0.001 μM IGF-1 or 1 μM insulin +/- 20 μM PI3K inhibitor LY294002. T cells were also exposed to SZ95 sebocyte supernatants which were pre-stimulated with IGF-1 or insulin. We found that 0.001 µM IGF-1 and 1 µM insulin activate the PI3K pathway in T cells leading to up-regulation of p-Akt and p-FoxO1 at 15 and 30 minutes. Nuclear FoxO1 was decreased and FoxO transcriptional activity was reduced. 0.001 µM IGF-1 and 1 µM insulin increased T cell proliferation but have no significant effect on Toll-like receptor2/4 (TLR) expression. Interestingly, supernatants from IGF-1- or insulin-stimulated sebocytes activated the PI3K pathway in T cells but reduced T cell proliferation. Taken together, this study helps to support that high glycemic load diet may contribute to induce activation of the PI3K pathway and increase of proliferation in human primary T cells. Factors secreted by IGF-1- and insulin-stimulated sebocytes induce the PI3K pathway in T cells and reduce T cell proliferation, which probably can reflect a protective mechanism of the sebaceous gland basal cells.</p>","PeriodicalId":11115,"journal":{"name":"Dermato-Endocrinology","volume":"9 1","pages":"e1356518"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19381980.2017.1356518","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dermato-Endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19381980.2017.1356518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Hyper-glycemic food increases insulin-like growth factor 1 (IGF-1) and insulin signaling and regulates endocrine responses and thereby may modulate the course of acne. Inflammation and adaptive immune responses have a pivotal role in all stages of acne. Recent hypothesis suggests that hyperglycemic food reduces nuclear forkhead box-O1 (FoxO1) transcription factor and may eventually induces acne. The aim of our study was to investigate the role of IGF-1 and insulin on the phosphoinositide-3-kinase (PI3K)/Akt/FoxO1 pathway in human primary T cells and on the molecular functions of T cells in vitro. T cells were stimulated with 0.001 μM IGF-1 or 1 μM insulin +/- 20 μM PI3K inhibitor LY294002. T cells were also exposed to SZ95 sebocyte supernatants which were pre-stimulated with IGF-1 or insulin. We found that 0.001 µM IGF-1 and 1 µM insulin activate the PI3K pathway in T cells leading to up-regulation of p-Akt and p-FoxO1 at 15 and 30 minutes. Nuclear FoxO1 was decreased and FoxO transcriptional activity was reduced. 0.001 µM IGF-1 and 1 µM insulin increased T cell proliferation but have no significant effect on Toll-like receptor2/4 (TLR) expression. Interestingly, supernatants from IGF-1- or insulin-stimulated sebocytes activated the PI3K pathway in T cells but reduced T cell proliferation. Taken together, this study helps to support that high glycemic load diet may contribute to induce activation of the PI3K pathway and increase of proliferation in human primary T cells. Factors secreted by IGF-1- and insulin-stimulated sebocytes induce the PI3K pathway in T cells and reduce T cell proliferation, which probably can reflect a protective mechanism of the sebaceous gland basal cells.