{"title":"Low temperature heat capacities and thermodynamic functions described by Debye-Einstein integrals.","authors":"Ernst Gamsjäger, Manfred Wiessner","doi":"10.1007/s00706-017-2117-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Thermodynamic data of various crystalline solids are assessed from low temperature heat capacity measurements, i.e., from almost absolute zero to 300 K by means of semi-empirical models. Previous studies frequently present fit functions with a large amount of coefficients resulting in almost perfect agreement with experimental data. It is, however, pointed out in this work that special care is required to avoid overfitting. Apart from anomalies like phase transformations, it is likely that data from calorimetric measurements can be fitted by a relatively simple Debye-Einstein integral with sufficient precision. Thereby, reliable values for the heat capacities, standard enthalpies, and standard entropies at <i>T</i> = 298.15 K are obtained. Standard thermodynamic functions of various compounds strongly differing in the number of atoms in the formula unit can be derived from this fitting procedure and are compared to the results of previous fitting procedures. The residuals are of course larger when the Debye-Einstein integral is applied instead of using a high number of fit coefficients or connected splines, but the semi-empiric fit coefficients keep their meaning with respect to physics. It is suggested to use the Debye-Einstein integral fit as a standard method to describe heat capacities in the range between 0 and 300 K so that the derived thermodynamic functions are obtained on the same theory-related semi-empiric basis. Additional fitting is recommended when a precise description for data at ultra-low temperatures (0-20 K) is requested.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":18766,"journal":{"name":"Monatshefte Fur Chemie","volume":"149 2","pages":"357-368"},"PeriodicalIF":1.7000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00706-017-2117-3","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte Fur Chemie","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00706-017-2117-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 20
Abstract
Abstract: Thermodynamic data of various crystalline solids are assessed from low temperature heat capacity measurements, i.e., from almost absolute zero to 300 K by means of semi-empirical models. Previous studies frequently present fit functions with a large amount of coefficients resulting in almost perfect agreement with experimental data. It is, however, pointed out in this work that special care is required to avoid overfitting. Apart from anomalies like phase transformations, it is likely that data from calorimetric measurements can be fitted by a relatively simple Debye-Einstein integral with sufficient precision. Thereby, reliable values for the heat capacities, standard enthalpies, and standard entropies at T = 298.15 K are obtained. Standard thermodynamic functions of various compounds strongly differing in the number of atoms in the formula unit can be derived from this fitting procedure and are compared to the results of previous fitting procedures. The residuals are of course larger when the Debye-Einstein integral is applied instead of using a high number of fit coefficients or connected splines, but the semi-empiric fit coefficients keep their meaning with respect to physics. It is suggested to use the Debye-Einstein integral fit as a standard method to describe heat capacities in the range between 0 and 300 K so that the derived thermodynamic functions are obtained on the same theory-related semi-empiric basis. Additional fitting is recommended when a precise description for data at ultra-low temperatures (0-20 K) is requested.
期刊介绍:
"Monatshefte für Chemie/Chemical Monthly" was originally conceived as an Austrian journal of chemistry. It has evolved into an international journal covering all branches of chemistry. Featuring the most recent advances in research in analytical chemistry, biochemistry, inorganic, medicinal, organic, physical, structural, and theoretical chemistry, Chemical Monthly publishes refereed original papers and a section entitled "Short Communications". Reviews, symposia in print, and issues devoted to special fields will also be considered.