FGF signaling controls Shh-dependent oligodendroglial fate specification in the ventral spinal cord.

IF 4 3区 生物学 Q1 DEVELOPMENTAL BIOLOGY Neural Development Pub Date : 2018-03-08 DOI:10.1186/s13064-018-0100-2
Marie-Amélie Farreny, Eric Agius, Sophie Bel-Vialar, Nathalie Escalas, Nagham Khouri-Farah, Chadi Soukkarieh, Cathy Danesin, Fabienne Pituello, Philippe Cochard, Cathy Soula
{"title":"FGF signaling controls Shh-dependent oligodendroglial fate specification in the ventral spinal cord.","authors":"Marie-Amélie Farreny, Eric Agius, Sophie Bel-Vialar, Nathalie Escalas, Nagham Khouri-Farah, Chadi Soukkarieh, Cathy Danesin, Fabienne Pituello, Philippe Cochard, Cathy Soula","doi":"10.1186/s13064-018-0100-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Most oligodendrocytes of the spinal cord originate from ventral progenitor cells of the pMN domain, characterized by expression of the transcription factor Olig2. A minority of oligodendrocytes is also recognized to emerge from dorsal progenitors during fetal development. The prevailing view is that generation of ventral oligodendrocytes depends on Sonic hedgehog (Shh) while dorsal oligodendrocytes develop under the influence of Fibroblast Growth Factors (FGFs).</p><p><strong>Results: </strong>Using the well-established model of the chicken embryo, we show that ventral spinal progenitor cells activate FGF signaling at the onset of oligodendrocyte precursor cell (OPC) generation. Inhibition of FGF receptors at that time appears sufficient to prevent generation of ventral OPCs, highlighting that, in addition to Shh, FGF signaling is required also for generation of ventral OPCs. We further reveal an unsuspected interplay between Shh and FGF signaling by showing that FGFs serve dual essential functions in ventral OPC specification. FGFs are responsible for timely induction of a secondary Shh signaling center, the lateral floor plate, a crucial step to create the burst of Shh required for OPC specification. At the same time, FGFs prevent down-regulation of Olig2 in pMN progenitor cells as these cells receive higher threshold of the Shh signal. Finally, we bring arguments favoring a key role of newly differentiated neurons acting as providers of the FGF signal required to trigger OPC generation in the ventral spinal cord.</p><p><strong>Conclusion: </strong>Altogether our data reveal that the FGF signaling pathway is activated and required for OPC commitment in the ventral spinal cord. More generally, our data may prove important in defining strategies to produce large populations of determined oligodendrocyte precursor cells from undetermined neural progenitors, including stem cells. In the long run, these new data could be useful in attempts to stimulate the oligodendrocyte fate in residing neural stem cells.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":"13 1","pages":"3"},"PeriodicalIF":4.0000,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842613/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13064-018-0100-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Most oligodendrocytes of the spinal cord originate from ventral progenitor cells of the pMN domain, characterized by expression of the transcription factor Olig2. A minority of oligodendrocytes is also recognized to emerge from dorsal progenitors during fetal development. The prevailing view is that generation of ventral oligodendrocytes depends on Sonic hedgehog (Shh) while dorsal oligodendrocytes develop under the influence of Fibroblast Growth Factors (FGFs).

Results: Using the well-established model of the chicken embryo, we show that ventral spinal progenitor cells activate FGF signaling at the onset of oligodendrocyte precursor cell (OPC) generation. Inhibition of FGF receptors at that time appears sufficient to prevent generation of ventral OPCs, highlighting that, in addition to Shh, FGF signaling is required also for generation of ventral OPCs. We further reveal an unsuspected interplay between Shh and FGF signaling by showing that FGFs serve dual essential functions in ventral OPC specification. FGFs are responsible for timely induction of a secondary Shh signaling center, the lateral floor plate, a crucial step to create the burst of Shh required for OPC specification. At the same time, FGFs prevent down-regulation of Olig2 in pMN progenitor cells as these cells receive higher threshold of the Shh signal. Finally, we bring arguments favoring a key role of newly differentiated neurons acting as providers of the FGF signal required to trigger OPC generation in the ventral spinal cord.

Conclusion: Altogether our data reveal that the FGF signaling pathway is activated and required for OPC commitment in the ventral spinal cord. More generally, our data may prove important in defining strategies to produce large populations of determined oligodendrocyte precursor cells from undetermined neural progenitors, including stem cells. In the long run, these new data could be useful in attempts to stimulate the oligodendrocyte fate in residing neural stem cells.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FGF信号控制腹侧脊髓中Shh依赖性少突胶质细胞命运分化。
背景:脊髓的大部分少突胶质细胞起源于pMN域的腹侧祖细胞,其特征是转录因子Olig2的表达。少数少突胶质细胞也被认为是在胎儿发育过程中从背侧祖细胞中产生的。目前流行的观点认为,腹侧少突胶质细胞的生成依赖于音速刺猬(Shh),而背侧少突胶质细胞则在成纤维细胞生长因子(FGFs)的影响下发育:我们利用成熟的鸡胚胎模型证明,腹侧脊髓祖细胞在少突胶质细胞前体细胞(OPC)生成之初就激活了FGF信号。当时抑制 FGF 受体似乎足以阻止腹侧 OPC 的生成,这突出表明除了 Shh 外,腹侧 OPC 的生成还需要 FGF 信号。我们进一步揭示了 Shh 和 FGF 信号之间未曾预料到的相互作用,表明 FGF 在腹侧 OPC 的规格化过程中具有双重重要功能。FGF负责及时诱导二级Shh信号中心--侧底板,这是形成OPC分化所需的Shh爆发的关键步骤。同时,由于pMN祖细胞接收到更高阈值的Shh信号,FGF能阻止这些细胞中Olig2的下调。最后,我们提出了新分化神经元作为触发腹侧脊髓 OPC 生成所需的 FGF 信号提供者的关键作用:总之,我们的数据揭示了 FGF 信号通路被激活,并且是腹侧脊髓中 OPC 承诺所必需的。更广泛地说,我们的数据可能对确定从未确定的神经祖细胞(包括干细胞)中产生大量确定的少突胶质前体细胞的策略非常重要。从长远来看,这些新数据可能有助于刺激驻留神经干细胞的少突胶质细胞命运。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Development
Neural Development 生物-发育生物学
CiteScore
6.60
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: Neural Development is a peer-reviewed open access, online journal, which features studies that use molecular, cellular, physiological or behavioral methods to provide novel insights into the mechanisms that underlie the formation of the nervous system. Neural Development aims to discover how the nervous system arises and acquires the abilities to sense the world and control adaptive motor output. The field includes analysis of how progenitor cells form a nervous system during embryogenesis, and how the initially formed neural circuits are shaped by experience during early postnatal life. Some studies use well-established, genetically accessible model systems, but valuable insights are also obtained from less traditional models that provide behavioral or evolutionary insights.
期刊最新文献
Correction: Embryonic development of a centralised brain in coleoid cephalopods. Terminal differentiation precedes functional circuit integration in the peduncle neurons in regenerating Hydra vulgaris. Mapping the cellular expression patterns of vascular endothelial growth factor aa and bb genes and their receptors in the adult zebrafish brain during constitutive and regenerative neurogenesis LRRK2 kinase activity is necessary for development and regeneration in Nematostella vectensis. Correction: scMultiome analysis identifies a single caudal hindbrain compartment in the developing zebrafish nervous system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1