Synchrotron X-Ray Diffraction Dynamic Sampling for Protein Crystal Centering.

Nicole M Scarborough, G M Dilshan P Godaliyadda, Dong Hye Ye, David J Kissick, Shijie Zhang, Justin A Newman, Michael J Sheedlo, Azhad Chowdhury, Robert F Fischetti, Chittaranjan Das, Gregery T Buzzard, Charles A Bouman, Garth J Simpson
{"title":"Synchrotron X-Ray Diffraction Dynamic Sampling for Protein Crystal Centering.","authors":"Nicole M Scarborough,&nbsp;G M Dilshan P Godaliyadda,&nbsp;Dong Hye Ye,&nbsp;David J Kissick,&nbsp;Shijie Zhang,&nbsp;Justin A Newman,&nbsp;Michael J Sheedlo,&nbsp;Azhad Chowdhury,&nbsp;Robert F Fischetti,&nbsp;Chittaranjan Das,&nbsp;Gregery T Buzzard,&nbsp;Charles A Bouman,&nbsp;Garth J Simpson","doi":"10.2352/ISSN.2470-1173.2017.17.COIMG-415","DOIUrl":null,"url":null,"abstract":"<p><p>A supervised learning approach for dynamic sampling (SLADS) was developed to reduce X-ray exposure prior to data collection in protein structure determination. Implementation of this algorithm allowed reduction of the X-ray dose to the central core of the crystal by up to 20-fold compared to current raster scanning approaches. This dose reduction corresponds directly to a reduction on X-ray damage to the protein crystals prior to data collection for structure determination. Implementation at a beamline at Argonne National Laboratory suggests promise for the use of the SLADS approach to aid in the analysis of X-ray labile crystals. The potential benefits match a growing need for improvements in automated approaches for microcrystal positioning.</p>","PeriodicalId":73514,"journal":{"name":"IS&T International Symposium on Electronic Imaging","volume":"2017 ","pages":"6-9"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2352/ISSN.2470-1173.2017.17.COIMG-415","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IS&T International Symposium on Electronic Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/ISSN.2470-1173.2017.17.COIMG-415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A supervised learning approach for dynamic sampling (SLADS) was developed to reduce X-ray exposure prior to data collection in protein structure determination. Implementation of this algorithm allowed reduction of the X-ray dose to the central core of the crystal by up to 20-fold compared to current raster scanning approaches. This dose reduction corresponds directly to a reduction on X-ray damage to the protein crystals prior to data collection for structure determination. Implementation at a beamline at Argonne National Laboratory suggests promise for the use of the SLADS approach to aid in the analysis of X-ray labile crystals. The potential benefits match a growing need for improvements in automated approaches for microcrystal positioning.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质晶体定心的同步加速器x射线衍射动态采样。
开发了一种用于动态采样(SLADS)的监督学习方法,以减少蛋白质结构测定数据收集之前的x射线暴露。与目前的光栅扫描方法相比,该算法的实现允许将晶体中心核心的x射线剂量减少多达20倍。这种剂量的减少直接对应于在收集结构测定数据之前对蛋白质晶体的x射线损伤的减少。在阿贡国家实验室的光束线上的实施表明,SLADS方法有望用于帮助分析x射线不稳定晶体。潜在的好处与日益增长的微晶体定位自动化方法改进的需求相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Egocentric Boundaries on Distinguishing Colliding and Non-Colliding Pedestrians while Walking in a Virtual Environment. Optical flow for autonomous driving: Applications, challenges and improvements Improving the performance of web-streaming by super-resolution upscaling techniques Self-supervised visual representation learning on food images Conditional synthetic food image generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1