Q-Matrix Optimization Based on the Linear Logistic Test Model.

Journal of applied measurement Pub Date : 2017-01-01
Lin Ma, Kelly E Green
{"title":"Q-Matrix Optimization Based on the Linear Logistic Test Model.","authors":"Lin Ma,&nbsp;Kelly E Green","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This study explored optimization of item-attribute matrices with the linear logistic test model (Fischer, 1973), with optimal models explaining more variance in item difficulty due to identified item attributes. Data were 8th-grade mathematics test item responses of two TIMSS 2007 booklets. The study investigated three categories of attributes (content, cognitive process, and comprehensive cognitive process) at two grain levels (larger, smaller) and also compared results with random attribute matrices. The proposed attributes accounted for most of the variance in item difficulty for two assessment booklets (81% and 65%). The variance explained by the content attributes was very small (13% to 31%), less than variance explained by the comprehensive cognitive process attributes which explained much more variance than the content and cognitive process attributes. The variances explained by the grain level were similar to each other. However, the attributes did not predict the item difficulties of two assessment booklets equally.</p>","PeriodicalId":73608,"journal":{"name":"Journal of applied measurement","volume":"18 3","pages":"247-267"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied measurement","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explored optimization of item-attribute matrices with the linear logistic test model (Fischer, 1973), with optimal models explaining more variance in item difficulty due to identified item attributes. Data were 8th-grade mathematics test item responses of two TIMSS 2007 booklets. The study investigated three categories of attributes (content, cognitive process, and comprehensive cognitive process) at two grain levels (larger, smaller) and also compared results with random attribute matrices. The proposed attributes accounted for most of the variance in item difficulty for two assessment booklets (81% and 65%). The variance explained by the content attributes was very small (13% to 31%), less than variance explained by the comprehensive cognitive process attributes which explained much more variance than the content and cognitive process attributes. The variances explained by the grain level were similar to each other. However, the attributes did not predict the item difficulties of two assessment booklets equally.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于线性Logistic检验模型的q -矩阵优化。
本研究利用线性逻辑检验模型(Fischer, 1973)探索了项目属性矩阵的优化,最优模型解释了由于识别项目属性而导致的项目难度的更大差异。数据为两本timss2007小册子的八年级数学测验题目回答。本研究在大、小两个粒度层次上考察了三大类属性(内容、认知过程和综合认知过程),并将结果与随机属性矩阵进行了比较。建议的属性占了两个评估手册中项目难度差异的大部分(81%和65%)。由内容属性解释的方差非常小(13% ~ 31%),小于由综合认知过程属性解释的方差,后者比内容和认知过程属性解释的方差大得多。用粒度水平解释的方差是相似的。然而,这些属性并不能平均地预测两种评估手册的题目难度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Validation of Egalitarian Education Questionnaire using Rasch Measurement Model. Bootstrap Estimate of Bias for Intraclass Correlation. Rasch's Logistic Model Applied to Growth. Psychometric Properties of the General Movement Optimality Score using Rasch Measurement. Rasch Analysis of the Burn-Specific Pain Anxiety Scale: Evidence for the Abbreviated Version.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1