{"title":"Probing three-dimensional collective cancer invasion with DIGME.","authors":"Amani A Alobaidi, Bo Sun","doi":"10.1186/s41236-017-0004-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Multicellular pattern formation plays an important role in developmental biology, cancer metastasis and wound healing. While many physical factors have been shown to regulate these multicellular processes, the role of ECM micro-to-meso scale geometry has been poorly understood in 3D collective cancer invasion.</p><p><strong>Results: </strong>We have developed a mechanical-based strategy, Diskoid In Geometrically Micropatterned ECM (DIGME). DIGME allows easy engineering of the shape of 3D tissue organoid, the mesoscale ECM heterogeneity, and the fiber alignment of collagen-based ECM all at the same time. We have employed DIGME to study the 3D invasion of MDA-MB-231 diskoids in engineered collagen matrix. We find that the collective cancer invasion is closely regulated by the micro-to-meso scale geometry of the ECM.</p><p><strong>Conclusions: </strong>We conclude that DIGME provides a simple yet powerful tool to probe 3D dynamics of tissue organoids in physically patterned microenvironments.</p>","PeriodicalId":92184,"journal":{"name":"Cancer convergence","volume":"1 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876692/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer convergence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41236-017-0004-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Multicellular pattern formation plays an important role in developmental biology, cancer metastasis and wound healing. While many physical factors have been shown to regulate these multicellular processes, the role of ECM micro-to-meso scale geometry has been poorly understood in 3D collective cancer invasion.
Results: We have developed a mechanical-based strategy, Diskoid In Geometrically Micropatterned ECM (DIGME). DIGME allows easy engineering of the shape of 3D tissue organoid, the mesoscale ECM heterogeneity, and the fiber alignment of collagen-based ECM all at the same time. We have employed DIGME to study the 3D invasion of MDA-MB-231 diskoids in engineered collagen matrix. We find that the collective cancer invasion is closely regulated by the micro-to-meso scale geometry of the ECM.
Conclusions: We conclude that DIGME provides a simple yet powerful tool to probe 3D dynamics of tissue organoids in physically patterned microenvironments.