The antibiotic cyclomarin blocks arginine-phosphate-induced millisecond dynamics in the N-terminal domain of ClpC1 from Mycobacterium tuberculosis.

The Journal of Biological Chemistry Pub Date : 2018-06-01 Epub Date: 2018-04-09 DOI:10.1074/jbc.RA118.002251
Katharina Weinhäupl, Martha Brennich, Uli Kazmaier, Joel Lelievre, Lluis Ballell, Alfred Goldberg, Paul Schanda, Hugo Fraga
{"title":"The antibiotic cyclomarin blocks arginine-phosphate-induced millisecond dynamics in the N-terminal domain of ClpC1 from <i>Mycobacterium tuberculosis</i>.","authors":"Katharina Weinhäupl, Martha Brennich, Uli Kazmaier, Joel Lelievre, Lluis Ballell, Alfred Goldberg, Paul Schanda, Hugo Fraga","doi":"10.1074/jbc.RA118.002251","DOIUrl":null,"url":null,"abstract":"<p><p><i>Mycobacterium tuberculosis</i> can remain dormant in the host, an ability that explains the failure of many current tuberculosis treatments. Recently, the natural products cyclomarin, ecumicin, and lassomycin have been shown to efficiently kill <i>Mycobacterium tuberculosis</i> persisters. Their target is the N-terminal domain of the hexameric AAA+ ATPase ClpC1, which recognizes, unfolds, and translocates protein substrates, such as proteins containing phosphorylated arginine residues, to the ClpP1P2 protease for degradation. Surprisingly, these antibiotics do not inhibit ClpC1 ATPase activity, and how they cause cell death is still unclear. Here, using NMR and small-angle X-ray scattering, we demonstrate that arginine-phosphate binding to the ClpC1 N-terminal domain induces millisecond dynamics. We show that these dynamics are caused by conformational changes and do not result from unfolding or oligomerization of this domain. Cyclomarin binding to this domain specifically blocked these N-terminal dynamics. On the basis of these results, we propose a mechanism of action involving cyclomarin-induced restriction of ClpC1 dynamics, which modulates the chaperone enzymatic activity leading eventually to cell death.</p>","PeriodicalId":22621,"journal":{"name":"The Journal of Biological Chemistry","volume":"293 22","pages":"8379-8393"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986217/pdf/zbc8379.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Biological Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1074/jbc.RA118.002251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/4/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mycobacterium tuberculosis can remain dormant in the host, an ability that explains the failure of many current tuberculosis treatments. Recently, the natural products cyclomarin, ecumicin, and lassomycin have been shown to efficiently kill Mycobacterium tuberculosis persisters. Their target is the N-terminal domain of the hexameric AAA+ ATPase ClpC1, which recognizes, unfolds, and translocates protein substrates, such as proteins containing phosphorylated arginine residues, to the ClpP1P2 protease for degradation. Surprisingly, these antibiotics do not inhibit ClpC1 ATPase activity, and how they cause cell death is still unclear. Here, using NMR and small-angle X-ray scattering, we demonstrate that arginine-phosphate binding to the ClpC1 N-terminal domain induces millisecond dynamics. We show that these dynamics are caused by conformational changes and do not result from unfolding or oligomerization of this domain. Cyclomarin binding to this domain specifically blocked these N-terminal dynamics. On the basis of these results, we propose a mechanism of action involving cyclomarin-induced restriction of ClpC1 dynamics, which modulates the chaperone enzymatic activity leading eventually to cell death.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗生素环马林能阻断结核分枝杆菌 ClpC1 N 端结构域中由磷酸精氨酸诱导的毫秒级动力学。
结核分枝杆菌可以在宿主体内保持休眠状态,这也是目前许多结核病治疗失败的原因。最近,天然产物环马菌素、蜕皮激素和拉索霉素被证明能有效杀死结核分枝杆菌的宿主。它们的靶标是六聚体 AAA+ ATP 酶 ClpC1 的 N 端结构域,该结构域可识别、展开并将蛋白质底物(如含有磷酸化精氨酸残基的蛋白质)转运至 ClpP1P2 蛋白酶进行降解。令人惊讶的是,这些抗生素并不能抑制 ClpC1 ATP 酶的活性,它们是如何导致细胞死亡的仍不清楚。在这里,我们利用核磁共振和小角 X 射线散射证明了精氨酸-磷酸与 ClpC1 N 端结构域的结合会诱导毫秒级的动态变化。我们证明这些动态变化是由构象变化引起的,而不是由该结构域的解折或寡聚化导致的。环柑素与该结构域的结合特异性地阻断了这些 N 端动力学。基于这些结果,我们提出了一种作用机制,即环柑素诱导的 ClpC1 动态限制会调节伴侣酶活性,最终导致细胞死亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The molecular principles underlying diverse functions of the SLC26 family of proteins. JNK activity modulates postsynaptic scaffold protein SAP102 and kainate receptor dynamics in dendritic spines. Structural characterization of methylation-independent PP2A assembly guides Alphafold2Multimer prediction of family-wide PP2A complexes. Applications of protein ubiquitylation and deubiquitylation in drug discovery. Rapid HPLC method reveals dynamic shifts in coenzyme Q redox state.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1