Using Full Genomic Information to Predict Disease: Breaking Down the Barriers Between Complex and Mendelian Diseases.

IF 7.7 2区 生物学 Q1 GENETICS & HEREDITY Annual review of genomics and human genetics Pub Date : 2018-08-31 Epub Date: 2018-04-11 DOI:10.1146/annurev-genom-083117-021136
Daniel M Jordan, Ron Do
{"title":"Using Full Genomic Information to Predict Disease: Breaking Down the Barriers Between Complex and Mendelian Diseases.","authors":"Daniel M Jordan,&nbsp;Ron Do","doi":"10.1146/annurev-genom-083117-021136","DOIUrl":null,"url":null,"abstract":"<p><p>While sequence-based genetic tests have long been available for specific loci, especially for Mendelian disease, the rapidly falling costs of genome-wide genotyping arrays, whole-exome sequencing, and whole-genome sequencing are moving us toward a future where full genomic information might inform the prognosis and treatment of a variety of diseases, including complex disease. Similarly, the availability of large populations with full genomic information has enabled new insights about the etiology and genetic architecture of complex disease. Insights from the latest generation of genomic studies suggest that our categorization of diseases as complex may conceal a wide spectrum of genetic architectures and causal mechanisms that ranges from Mendelian forms of complex disease to complex regulatory structures underlying Mendelian disease. Here, we review these insights, along with advances in the prediction of disease risk and outcomes from full genomic information.</p>","PeriodicalId":8231,"journal":{"name":"Annual review of genomics and human genetics","volume":"19 ","pages":"289-301"},"PeriodicalIF":7.7000,"publicationDate":"2018-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-genom-083117-021136","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genomics and human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genom-083117-021136","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/4/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 12

Abstract

While sequence-based genetic tests have long been available for specific loci, especially for Mendelian disease, the rapidly falling costs of genome-wide genotyping arrays, whole-exome sequencing, and whole-genome sequencing are moving us toward a future where full genomic information might inform the prognosis and treatment of a variety of diseases, including complex disease. Similarly, the availability of large populations with full genomic information has enabled new insights about the etiology and genetic architecture of complex disease. Insights from the latest generation of genomic studies suggest that our categorization of diseases as complex may conceal a wide spectrum of genetic architectures and causal mechanisms that ranges from Mendelian forms of complex disease to complex regulatory structures underlying Mendelian disease. Here, we review these insights, along with advances in the prediction of disease risk and outcomes from full genomic information.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用全基因组信息预测疾病:打破复杂疾病和孟德尔疾病之间的障碍。
虽然基于序列的基因检测长期以来一直可用于特定位点,特别是孟德尔病,但全基因组基因分型阵列、全外显子组测序和全基因组测序的成本迅速下降,正将我们推向一个完整基因组信息可能为各种疾病(包括复杂疾病)的预后和治疗提供信息的未来。同样,拥有完整基因组信息的大量人群的可用性使人们能够对复杂疾病的病因学和遗传结构有新的认识。来自最新一代基因组研究的见解表明,我们将疾病分类为复杂疾病可能隐藏了广泛的遗传结构和因果机制,范围从复杂疾病的孟德尔形式到孟德尔疾病潜在的复杂调节结构。在这里,我们回顾了这些见解,以及从全基因组信息预测疾病风险和结果的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.90
自引率
1.10%
发文量
29
期刊介绍: Since its inception in 2000, the Annual Review of Genomics and Human Genetics has been dedicated to showcasing significant developments in genomics as they pertain to human genetics and the human genome. The journal emphasizes genomic technology, genome structure and function, genetic modification, human variation and population genetics, human evolution, and various aspects of human genetic diseases, including individualized medicine.
期刊最新文献
PIK3CA-Related Disorders: From Disease Mechanism to Evidence-Based Treatments. RNA Sequencing in Disease Diagnosis. The Myriad Decision at 10. The Role of Cilia and the Complex Genetics of Congenital Heart Disease. Toward Realizing the Promise of AI in Precision Health Across the Spectrum of Care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1