A Sequence-Dependent DNA Condensation Induced by Prion Protein.

IF 1.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Nucleic Acids Pub Date : 2018-02-20 eCollection Date: 2018-01-01 DOI:10.1155/2018/9581021
Alakesh Bera, Sajal Biring
{"title":"A Sequence-Dependent DNA Condensation Induced by Prion Protein.","authors":"Alakesh Bera,&nbsp;Sajal Biring","doi":"10.1155/2018/9581021","DOIUrl":null,"url":null,"abstract":"<p><p>Different studies indicated that the prion protein induces hybridization of complementary DNA strands. Cell culture studies showed that the scrapie isoform of prion protein remained bound with the chromosome. In present work, we used an oxazole dye, YOYO, as a reporter to quantitative characterization of the DNA condensation by prion protein. We observe that the prion protein induces greater fluorescence quenching of YOYO intercalated in DNA containing only GC bases compared to the DNA containing four bases whereas the effect of dye bound to DNA containing only AT bases is marginal. DNA-condensing biological polyamines are less effective than prion protein in quenching of DNA-bound YOYO fluorescence. The prion protein induces marginal quenching of fluorescence of the dye bound to oligonucleotides, which are resistant to condensation. The ultrastructural studies with electron microscope also validate the biophysical data. The GC bases of the target DNA are probably responsible for increased condensation in the presence of prion protein. To our knowledge, this is the first report of a human cellular protein inducing a sequence-dependent DNA condensation. The increased condensation of GC-rich DNA by prion protein may suggest a biological function of the prion protein and a role in its pathogenesis.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/9581021","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nucleic Acids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/9581021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Different studies indicated that the prion protein induces hybridization of complementary DNA strands. Cell culture studies showed that the scrapie isoform of prion protein remained bound with the chromosome. In present work, we used an oxazole dye, YOYO, as a reporter to quantitative characterization of the DNA condensation by prion protein. We observe that the prion protein induces greater fluorescence quenching of YOYO intercalated in DNA containing only GC bases compared to the DNA containing four bases whereas the effect of dye bound to DNA containing only AT bases is marginal. DNA-condensing biological polyamines are less effective than prion protein in quenching of DNA-bound YOYO fluorescence. The prion protein induces marginal quenching of fluorescence of the dye bound to oligonucleotides, which are resistant to condensation. The ultrastructural studies with electron microscope also validate the biophysical data. The GC bases of the target DNA are probably responsible for increased condensation in the presence of prion protein. To our knowledge, this is the first report of a human cellular protein inducing a sequence-dependent DNA condensation. The increased condensation of GC-rich DNA by prion protein may suggest a biological function of the prion protein and a role in its pathogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
朊病毒蛋白诱导的序列依赖性DNA凝聚。
不同的研究表明,朊病毒蛋白诱导互补DNA链的杂交。细胞培养研究表明,痒病朊蛋白的同型体仍然与染色体结合。在本工作中,我们使用一种恶唑染料YOYO作为朊病毒蛋白凝结DNA的定量表征。我们观察到,与含有4个碱基的DNA相比,朊病毒蛋白在只含有GC碱基的DNA中嵌入YOYO时,诱导了更大的荧光猝灭,而染料与只含有AT碱基的DNA结合的影响很小。dna凝聚型生物多胺对dna结合YOYO荧光的猝灭效果不如朊病毒蛋白。朊病毒蛋白诱导与寡核苷酸结合的染料的荧光边缘猝灭,从而抵抗缩合。电镜超微结构研究也验证了生物物理数据。目标DNA的GC碱基可能是在朊病毒蛋白存在下增加凝聚的原因。据我们所知,这是人类细胞蛋白诱导序列依赖性DNA凝聚的第一个报告。富含gc的DNA被朊病毒蛋白凝聚的增加可能提示了朊病毒蛋白的生物学功能及其发病机制中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nucleic Acids
Journal of Nucleic Acids BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
3.10
自引率
21.70%
发文量
5
审稿时长
12 weeks
期刊最新文献
Dual Detection of Hepatitis B and C Viruses Using CRISPR-Cas Systems and Lateral Flow Assay. Genetic Polymorphisms and Forensic Parameters of Thirteen X-Chromosome Markers in the Iraqi Kurdish Population Synthesis and Evaluation of MGB Polyamide-Oligonucleotide Conjugates as Gene Expression Control Compounds. Comparing Two Methods for the Isolation of Exosomes. Development of a Reference Method and Materials for Quantitative Measurement of UV-Induced DNA Damage in Mammalian Cells: Comparison of Comet Assay and Cell Viability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1